Advertisement

Journal of Materials Science

, Volume 41, Issue 21, pp 7005–7010 | Cite as

The effect of photo-oxidation on thermal and fire retardancy of polypropylene nanocomposites

  • Magatte Diagne
  • Mamadou Gueye
  • Anicet Dasilva
  • Loic Vidal
  • Adams Tidjani
Article

Abstract

Nanocomposites of polypropylene-graft-maleic anhydride/clay were prepared by melt blending in an extruder mixer. The nanoscale dispersion of the clay in the polymer was analysed by wide-angle X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results of XRD and TEM showed that the nanocomposites obtained were a kind of intercalated-delaminated structures side by side with different dominant states, depending on the clay used and on the processing conditions. The consequences of photo-oxidation on the thermal stability and fire retardant properties of the nanocomposites were investigated using thermogravimetric analysis and cone calorimetry tests. It appeared that this degradation dramatically affected the important properties of the nanocomposites. A loss of thermal stability and fire retardant performance was observed. This was ascribed to scission reactions that occurred during the oxidative degradation prior to thermal and fire tests.

Keywords

Heat Release Rate Clay Layer Mass Loss Rate Maleic Anhydride Ignition Time 

Notes

Acknowledgements

The authors are indebted to the Volkswagen foundation for the financial support, the Federal Institute for Research and Testing (BAM) for the cone tests, Mr. Claude da Silva from the Université de Mulhouse, France, for the X-ray measurements and, Dr. Bénédicte Mailhot from the Laboratoire de Photochimie de l’Université BP de Clermont, France, for the oxidation profile.

References

  1. 1.
    Revue de Sciences physiques, nanoscience, microélectronique, matériau (2004) Mai, No. 11Google Scholar
  2. 2.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1185CrossRefGoogle Scholar
  3. 3.
    Tidjani A, Wilkie CA (2001) Polym Deg Stab 74:33CrossRefGoogle Scholar
  4. 4.
    Gilman JW, Kashiwagi T, Nyden M, Brown JET, Jackson CL, Lomakin S (1998) In: Al-Malaika S, Golovoy A, Wilkie CA (eds) Chemistry and technology of polymers additives. Blackwell Science, Oxford, pp 249–65Google Scholar
  5. 5.
    Zanetti M, Camino G, Thomann R, Mulhaupt R (2001) Polymer 42:4501CrossRefGoogle Scholar
  6. 6.
    Kim KN, Kim H, Lee JW (2001) Polym Eng Sci 41(11):1963CrossRefGoogle Scholar
  7. 7.
    Tidjani A, Wald O, Pohl MM, Hentschel MP, Schartel B (2003) Polym Deg Stab 82:133CrossRefGoogle Scholar
  8. 8.
    Gradette J-L, Sinturel C, Lemaire J (1999) Polym Deg Stab 64:411CrossRefGoogle Scholar
  9. 9.
    Tidjani A (2005) Polym Deg Stab 87:43CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Magatte Diagne
    • 1
  • Mamadou Gueye
    • 1
  • Anicet Dasilva
    • 1
  • Loic Vidal
    • 2
  • Adams Tidjani
    • 1
  1. 1.LRNA, Faculté des Sciences et TechniquesUniversité Cheikh Anta Diop de DakarDakar-FannSénégal
  2. 2.Service de Microscopie ElectroniqueInstitut de chimie des surfaces et interfaces CNRS UPR 9069MulhouseFrance

Personalised recommendations