Advertisement

Journal of Materials Science

, Volume 41, Issue 21, pp 6973–6977 | Cite as

An investigation of the effects of mix strength on the fracture and fatigue behavior of concrete mortar

  • J. Lou
  • K. Bhalerao
  • A. B. O. Soboyejo
  • W. O. Soboyejo
Article
  • 120 Downloads

Abstract

This paper examines the effects of mix compressive strength (30, 35 and 40 MPa) on the fracture initiation toughness, resistance-curve behavior and fatigue crack growth behavior of concrete mortar. The fracture initiation toughness and the resistance-curve behavior are shown to increase with increasing mix strength. The observed resistance-curve behavior is then attributed largely to the effects of ligament bridging, which are predicted using small- and large-scale bridging models. In contrast, the fatigue crack growth resistance is shown to decrease with increasing mix strength. An extended multiparameter framework was used for the modeling of fatigue crack growth. Finally, the implications of the results are discussed for the design of concrete mixtures with attractive combinations of strength, fracture toughness and fatigue crack growth resistance.

Keywords

Fracture Toughness Stress Intensity Factor Fatigue Crack Growth Fatigue Crack Growth Rate Stable Crack Growth 

Notes

Acknowledgments

The research is supported by The Division of Mechanics and Materials of The National Science Foundation, with Dr. Oscar Dillon and Dr. Ken Chong as Program Monitors. Appreciation is also extended to Dr. Dan Davis for his encouragement and support of this work.

References

  1. 1.
    Karihaloo BL, Nallathambi P (1989) Cement Concr Res 19:603CrossRefGoogle Scholar
  2. 2.
    Jeng Y-S, Shah SP (1985) J Eng Mech 111:1227CrossRefGoogle Scholar
  3. 3.
    Bazant ZP, Kim JK, Pfeiffer PA (1986) J Struct Eng 112:289CrossRefGoogle Scholar
  4. 4.
    RILEM FMC-50, RILEM, “Materiux et Constructions” 18:287Google Scholar
  5. 5.
    Marchand J, Pleau R, Gagne R (1995) In: Skalny J, Mindess S (eds) Material Science of concrete IV, Acers, pp 283Google Scholar
  6. 6.
    Nordby Gene M (1958) ACI J 55:191Google Scholar
  7. 7.
    Bhalerao K, Shen W, Soboyejo ABO, Soboyejo WO (2003) Int J Concr Cement Compos 25:607CrossRefGoogle Scholar
  8. 8.
    Bazant ZP, Xu K (1991) ACI J 88:390Google Scholar
  9. 9.
    Lou J, Soboyejo WO (2001) Metallurg Mater Trans 32A:325CrossRefGoogle Scholar
  10. 10.
    Budiansky B, Amazigo JC, Evans AG (1988) J Mech Phys Solids 36:167CrossRefGoogle Scholar
  11. 11.
    Tada H, Paris PC, Irwin GR (1999) The stress analysis of cracks handbook. American Society of Mechanical Engineers, New York, NYGoogle Scholar
  12. 12.
    Bloyer DR, Venkateswara Rao KT, Ritchie RO (1998) Metall Mater Trans A 29A:2483CrossRefGoogle Scholar
  13. 13.
    Li M, Soboyejo WO (2000) Metall Mater Trans A 31A:1385CrossRefGoogle Scholar
  14. 14.
    Fett T, Munz D (1994) Stress intensity factors and weight functions for one-dimensional cracks. Institut fur Materialforschung, Kernforschungszentrum, Karlsryhe, GermanyGoogle Scholar
  15. 15.
    Paris PC, Gomez M, Anderson WE (1961) Trend Engineer 13:9Google Scholar
  16. 16.
    Soboyejo WO, Shen W, Lou J, Mercer C, Sinha V, Soboyejo ABO (2002) Int J Fatig 24:69CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • J. Lou
    • 1
  • K. Bhalerao
    • 2
  • A. B. O. Soboyejo
    • 2
  • W. O. Soboyejo
    • 1
  1. 1.Princeton Materials Institute, and the Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA
  2. 2.Department of Food, Agricultural and Biological Engineering, and the Department of Aerospace EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations