Journal of Materials Science

, Volume 42, Issue 10, pp 3588–3591 | Cite as

Structural analysis of electrodeposited copper microstructures fabricated through template synthesis

  • Raminder KaurEmail author
  • N. K. Verma
  • S. K. Chakarvarti


The electrochemical template synthesis of high aspect ratio copper microcylinders in the track-etch membranes of polycarbonate having nominal pore size of 800, 600 and 200 nm is considered. The morphological and structural analyses have been carried out through scanning electron microscopy and X-ray diffraction, respectively. The X-ray diffraction studies reveal that the material has FCC lattice structure with a high texture coefficient for (200) planes. Regardless of the nominal pore-size of the template membrane, the texturing has been found to decrease significantly when the electrolyte temperature during fabrication is increased from 30 to 60 °C.


Template Synthesis Texture Coefficient Track Membrane Nominal Pore Size Gold Palladium Alloy 



We gratefully acknowledge the generous financial support provided by All India Council for Technical Education, Govt. of India, New Delhi, for this research work, vide their letter no. F.No.8020/RID/R&D-84-2001-02 dated Mar. 4, 2002.


  1. 1.
    Reetz MT, Helbing W, Quaiser SA, Stimming U, Breuer N, Vogel R (1995) Science 267:367CrossRefGoogle Scholar
  2. 2.
    Spohr R (1990) Ion tracks and microtechnology. Vieweg Verlagsgesellschaft, BraunschweigCrossRefGoogle Scholar
  3. 3.
    Trautmann C (1995) Nucl Instrum Meth Phys Res B 105:81CrossRefGoogle Scholar
  4. 4.
    Huczko A (2000) Appl Phys A 70:365CrossRefGoogle Scholar
  5. 5.
    Martin CR (1994) Science 266:1961CrossRefGoogle Scholar
  6. 6.
    Brumlik CJ, Menon VP, Martin CR (1994) J Mater Res 9:1174CrossRefGoogle Scholar
  7. 7.
    Zach MP, Ng KH, Penner RM (2000) Science 290:2120CrossRefGoogle Scholar
  8. 8.
    Lu L, Sui ML, Lu K (2000) Science 290:1463CrossRefGoogle Scholar
  9. 9.
    Switzer JA, Shumsky MG, Bohannan EW (1999) Science 284:293CrossRefGoogle Scholar
  10. 10.
    Choo RTC, Toguri JM, EI-Sherik AM, Erb U (1995) J Appl Electrochem 25:384CrossRefGoogle Scholar
  11. 11.
    Huczko A (2000) Appl Phys A 70:365CrossRefGoogle Scholar
  12. 12.
    Whitney TM, Jiang JS, Searson PC, Chien CL (1993) Science 261:1316CrossRefGoogle Scholar
  13. 13.
    Sekhon GS, Verma NK, Kaur R, Chakarvarti SK, Kumar S (2004) Fondazione Giorgio Ronchi, Anno LIX N 4, p 529Google Scholar
  14. 14.
    Riveros G, Gomez H, Cortes A, Marotti RE, Dalchiele EA (2005) Appl Phys A 81:17CrossRefGoogle Scholar
  15. 15.
    Barrett CS, Massalski TB (1980) Structure of metals. Pergamon, Oxford, p 204Google Scholar
  16. 16.
    Brent L, Adams (1986) ASM metals handbook: materials characterization, vol 10, p 358Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Raminder Kaur
    • 1
    Email author
  • N. K. Verma
    • 1
  • S. K. Chakarvarti
    • 2
  1. 1.School of Physics and Materials ScienceThapar Institute of Engineering and TechnologyPatialaIndia
  2. 2.National Institute of TechnologyKurukshetraIndia

Personalised recommendations