Advertisement

Journal of Materials Science

, Volume 41, Issue 18, pp 6181–6184 | Cite as

Relations between the creep-rupture properties and the fractal dimension of three-dimensional fracture surface in a cobalt-base alloy

  • M. Tanaka
  • Y. Kimura
  • N. Oyama
  • R. Kato
Letter

B.B. Mandelbrot et al. [1] first described the geometrical features of impact fracture surfaces in steels by the fractal dimension, and found that the absorbed energy decreased with increasing fractal dimension of the fracture surface. The fractal dimension of the fracture surface represents self-similarity and complex nature of microstructures on fracture surfaces of materials, depending on the length scale range of the fractal analysis [2]. In the grain-boundary fracture of heat-resistant alloys, the fractal dimension of the fracture surface is associated with steps and ledges, which constitute the grain-boundary serration and are represented by the fractal dimension of the grain boundary, DGB (1 < DGB < 2), in the length scale range smaller than one grain-boundary length [3, 4]. The fractal dimension of the fracture surface is also associated with the pattern of grain-boundary microcracks linked to the fracture surface in the length scale range larger than one grain-boundary length...

Keywords

Fracture Surface Fractal Dimension Fractal Analysis Rupture Life Creep Ductility 

Notes

Acknowledgements

The authors thank The Iron and Steel Institute of Japan (Tekkou-Kenkyu-Shinkou-Josei) for financial support.

References

  1. 1.
    Mandelbrot BB, Passoja DE, Paullay AJ (1984) Nature 308:721CrossRefGoogle Scholar
  2. 2.
    Dauskardt RH, Haubensak F, Ritchie RO (1990) Acta Metall 38:142Google Scholar
  3. 3.
    Tanaka M (1992) J Mater Sci 27:4717CrossRefGoogle Scholar
  4. 4.
    Tanaka M (1997) J Mater Sci 32:1781CrossRefGoogle Scholar
  5. 5.
    Tanaka M (1993) Z Metallkd 84:697Google Scholar
  6. 6.
    Tanaka M (1996) J Mater Sci 31:3513CrossRefGoogle Scholar
  7. 7.
    Komai K, Kikuchi J (1985) J Soc Mater Sci Japan 34:648CrossRefGoogle Scholar
  8. 8.
    Kobayashi T, Shockey DA (1987) Metall Trans 18A:1941CrossRefGoogle Scholar
  9. 9.
    Stampfl J, Scherer S, Berchthaler M, Gruber M, Kolednik O (1996) Int J Fracture 78:35CrossRefGoogle Scholar
  10. 10.
    Stampfl J, Kolednik O (2000) Int J Fracture 101:321CrossRefGoogle Scholar
  11. 11.
    Tanaka M, Kimura Y, Chouanine L, Taguchi J, Kato R (2003) ISIJ Int 43:1453CrossRefGoogle Scholar
  12. 12.
    Mandelbrot BB (1985) The fractal geometry of nature. Translated by H. Hironaka, Nikkei Science, TokyoGoogle Scholar
  13. 13.
    Tanaka M, Kimura Y, Chouanine L, Kato R, Taguchi J (2003) J Mater Sci Lett 22:1279CrossRefGoogle Scholar
  14. 14.
    Langdon TG, Vastava RB (1982) in ASTM STP 765, American Society for Testing and Materials, Philadelphia, p 435Google Scholar
  15. 15.
    Evans RW, Wilshire B (1985) Creep of metals and alloys. The Institute of Metals, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Research Institute of Materials and Resources, Department of Mechanical Engineering, Faculty of Engineering and Resource ScienceAkita UniversityAkitaJapan
  2. 2.Nippon System Ware CompanyTokyoJapan
  3. 3.Student of Graduate School, Department of Mechanical Engineering, Faculty of Engineering and Resource ScienceAkita UniversityAkitaJapan

Personalised recommendations