Journal of Materials Science

, Volume 41, Issue 14, pp 4537–4542 | Cite as

Fabrication and characterization of Au-nanoparticle/W-nanodendrite structures on Al2O3 substrate

  • Guoqiang XieEmail author
  • Minghui Song
  • Kazuo Furuya


An Au-nanoparticle/W-nanodendrite compound structure was fabricated on an insulator Al2O3 substrate using an electron-beam-induced deposition (EBID) process combined with an ion sputtering method. The as-fabricated compound structures were characterized and analyzed using conventional and high-resolution transmission electron microscopy (CTEM and HRTEM) and X-ray energy dispersive spectroscopy (EDS). W-nanodendrite structures with the tips of 3 nm were grown self-standing at the edge of the Al2O3 substrate at positions separated from each other in distance of several nanometers. Au-nanoparticles with a grain size of 2.1 nm were uniformly distributed on the W-nanodendrites. The Au-nanoparticles were determined to be the equilibrium phase of Au with the face-centered cubic (fcc) structure.


Energy Dispersive Spectroscopy Electron Beam Irradiation Irradiate Area Energy Dispersive Spectroscopy Analysis Compound Structure 


  1. 1.
    Link S, Burda C, Wang ZL, El-Sayed MA (1999) J Chem Phys 11:1255CrossRefGoogle Scholar
  2. 2.
    Pal U, Sanchez Ramirez JF, Liu HB, Medina A, Ascencio JA (2004) Appl Phys A 79:79CrossRefGoogle Scholar
  3. 3.
    Ruiz A, Arbiol J, Cirera A, Cornet A, Morante JR (2002) Mater Sci Eng C 19:105CrossRefGoogle Scholar
  4. 4.
    De Meijer RJ, Stapel C, Jones DG, Roberts PD, Rozendaal A, Macdonald WG, Chen KZ, Zhang ZK, Cui ZL, Zuo DH, Yang DZ (1997) Nanostruct Mater 8:205CrossRefGoogle Scholar
  5. 5.
    Bond GC (2002) Catal Today 72:5CrossRefGoogle Scholar
  6. 6.
    Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301CrossRefGoogle Scholar
  7. 7.
    Haruta M (1997) Catal Today 36:153CrossRefGoogle Scholar
  8. 8.
    Diebold U (2005) Surf Sci 578:1CrossRefGoogle Scholar
  9. 9.
    Wang D, Hao Z, Cheng D, Shi X, Hu C (2003) J Mol Catal 200:229CrossRefGoogle Scholar
  10. 10.
    Franceschetti A, Pennycook SJ, Pantelides ST (2003) Chem Phys Lett 374:471CrossRefGoogle Scholar
  11. 11.
    Bulushev DA, Kiwi-Minsker L, Yuranov I, Suvorova EI, Buffat PA, Renken A (2002) J Catal 210:149CrossRefGoogle Scholar
  12. 12.
    Akita T, Okumura M, Tanaka K, Kohyama M, Haruta M (2005) J Mater Sci 40:3101CrossRefGoogle Scholar
  13. 13.
    Boccuzzi F, Chiorino A, Manzoli M, Lu P, Akita T, Ichikawa S, Haruta M (2001) J Catal 202:256CrossRefGoogle Scholar
  14. 14.
    Meier DC, Goodman DW (2004) J Am Chem Soc 126:1892CrossRefGoogle Scholar
  15. 15.
    Chen YJ, Yeh CT (2001) J Catal 200:59CrossRefGoogle Scholar
  16. 16.
    Kozlov AI, Kozlova AP, Asakura K, Matsui Y, Kogure T, Shido T, Iwasawa Y (2000) J Catal 196:56CrossRefGoogle Scholar
  17. 17.
    Arrii S, Morfin F, Renouprez AJ, Rousset JL (2004) J Am Chem Soc 126:1199CrossRefGoogle Scholar
  18. 18.
    Wang A, Liu J, Lin S, Lin T, Mou C (2005) J Catal 233:1486Google Scholar
  19. 19.
    Liu P, Rodriguez JA, Muckerman JT, Hrbek J (2003) Surf Sci 530:L313CrossRefGoogle Scholar
  20. 20.
    Song M, Mitsuishi K, Takeguchi M, Furuya K (2005) Appl Surf Sci 241:107CrossRefGoogle Scholar
  21. 21.
    Xie GQ, Song M, Mitsuishi K, Furuya K (2005) J Nanosci Nanotechno 5:615CrossRefGoogle Scholar
  22. 22.
    Xie GQ, Song M, Mitsuishi K, Furuya K (2005) Jpn J Appl Phys 44:5654CrossRefGoogle Scholar
  23. 23.
    Xie GQ, Song M, Mitsuishi K, Furuya K (2005) Physica E 29:564CrossRefGoogle Scholar
  24. 24.
    Song M, Mitsuishi K, Tanaka M, Takeguchi M, Shimojo M, Furuya K (2005) Appl Phys A 80:1431CrossRefGoogle Scholar
  25. 25.
    Koops HWP, Weiel R, Kern DP, Baum TH (1988) J Vac Sci Technol B 6B:477CrossRefGoogle Scholar
  26. 26.
    Hoyle PC, Cleaver JRA, Ahmed H (1996) J Vac Sci Technol B 14:662CrossRefGoogle Scholar
  27. 27.
    Mitsuishi K, Shimojo M, Han M, Furuya K (2003) Appl Phys Lett 83:2064CrossRefGoogle Scholar
  28. 28.
    Dong LX, Arai F, Fukuda T (2002) Appl Phys Lett 81:1919CrossRefGoogle Scholar
  29. 29.
    Matsui S, Kaito T, Fujita J, Komura M, Kanda K, Haruyama Y (2000) J Vac Sci Technol B 18:3181CrossRefGoogle Scholar
  30. 30.
    Utke I, Hoffmann P, Dwir B, Leifer K, Kapon E, Doppelt P (2000) J Vac Sci Technol B 18:3168CrossRefGoogle Scholar
  31. 31.
    Hiroshima H, Suzuki N, Ogawa N, Komuro M (1999) Jpn J Appl Phys 38:7135CrossRefGoogle Scholar
  32. 32.
    Kohlmann-Von Platen KT, Chlebek J, Weiss M, Reimer K, Oertel H, Brunger WH (1993) J Vac Sci Technol B 11:2219CrossRefGoogle Scholar
  33. 33.
    Hart RK, Kassner TF, Maurin JK (1970) Phil Mag 21:453CrossRefGoogle Scholar
  34. 34.
    Banhart F (1995) Phys Rev E 52:5156CrossRefGoogle Scholar
  35. 35.
    Wang HZ, Liu XH, Yang XJ, Wang X (2001) Mater Sci Eng A 311:180CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.High Voltage Electron Microscopy StationNational Institute for Materials ScienceTsukubaJapan
  2. 2.Institute for Materials ResearchTohoku UniversityAoba-Ku, SendaiJapan

Personalised recommendations