Advertisement

Journal of Materials Science

, Volume 41, Issue 15, pp 5043–5046 | Cite as

The interlaminar toughness of carbon-fibre reinforced plastic composites using ‘hybrid-toughened’ matrices

  • A. J. Kinloch
  • R. D. Mohammed
  • A. C. Taylor
  • S. Sprenger
  • D. Egan
Letter

Introduction

When polymerised, epoxy polymers are amorphous and highly crosslinked (i.e. thermosetting) materials. This microstructure results in many useful properties for structural engineering applications, such as a high modulus and failure strength, low creep, and good performance at elevated temperatures. For these reasons, epoxy polymers are frequently used as the matrices for fibre-reinforced materials.

However, the structure of such thermosetting polymers also leads to one highly undesirable property in that they are relatively brittle materials, with a poor resistance to crack initiation and growth. Nevertheless, it has been well established for many years that the incorporation of a second micro-phase of a dispersed rubbery [e.g. 1, 2, 3, 4] or a thermoplastic polymer [e.g. 5, 6, 7] into the epoxy can increase their toughness, without significantly impairing the other desirable engineering properties; and, considering the incorporation of a rubbery phase, typically the...

Keywords

Epoxy Polymer CFRP Laminate CFRP Plate Rubbery Phase Epoxy Equivalent Weight 

Notes

Acknowledgements

The authors wish to thank the Royal Academy of Engineering for a Post-Doctoral Research Fellowship and the Royal Society for a Brian Mercer Postdoctoral Award for Innovation for Dr. A.C. Taylor and a studentship from the Government of Trinidad & Tobago for Mr. R.D. Mohammed. Also, they would wish to acknowledge the general support from the US Army European Research Office for Mr. R.D. Mohammed.

References

  1. 1.
    Drake RS, Siebert AR (1975) SAMPE Quart 6(4):11Google Scholar
  2. 2.
    Kinloch AJ, Shaw SJ, Tod DA, Hunston DL (1983) Polymer 24:1341CrossRefGoogle Scholar
  3. 3.
    Yee AF, Pearson RA (1986) J Mater Sci 21:2462CrossRefGoogle Scholar
  4. 4.
    Finch CA, Hashemi S, Kinloch AJ (1987) Polym Commun 28:322CrossRefGoogle Scholar
  5. 5.
    Bucknall CB, Gilbert AH (1989) Polymer 30:213CrossRefGoogle Scholar
  6. 6.
    Kinloch AJ, Yuen ML, Jenkins SD (1994) J Mater Sci 29:3781CrossRefGoogle Scholar
  7. 7.
    Johnsen BB, Kinloch AJ, Taylor AC (2005) Polymer 46:7352CrossRefGoogle Scholar
  8. 8.
    Kinloch AJ, Lee JH, Taylor AC, Sprenger S, Eger C, Egan D (2003) J Adhesion 79:867CrossRefGoogle Scholar
  9. 9.
    Kinloch AJ, Mohammed RD, Taylor AC, Eger C, Sprenger S, Egan D (2005) J Mater Sci 40:5083CrossRefGoogle Scholar
  10. 10.
    Sprenger S, Eger C, Kinloch AJ, Lee JH, Taylor AC, Egan D (2003) Adhäsion Kleben Dichten 3:24Google Scholar
  11. 11.
    ISO-13586 (2000) Plastics – Determination of fracture toughness(G Ic and K Ic) – Linear elastic fracture mechanics (LEFM) approach. ISO, GenevaGoogle Scholar
  12. 12.
    ISO-527-1 (1993) Plastics – Determination of tensile properties – Part 1: general principles. ISO, GenevaGoogle Scholar
  13. 13.
    ISO-527-2 (1993) Plastics – Determination of tensile properties – Part 2: test conditions for moulding and extrusion plastics. ISO, GenevaGoogle Scholar
  14. 14.
    ISO-15024 (1999) Determination of the mode I delamination resistance of unidirectional fiber-reinforced polymer laminates using the double cantilever beam (DCB). ISO, GenevaGoogle Scholar
  15. 15.
    ASTM-D790M-93 (1999) Test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials [metric]. ASTM, PhiladelphiaGoogle Scholar
  16. 16.
    Kinloch AJ (2003) Mater Res Soc Bull 28:445CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • A. J. Kinloch
    • 1
  • R. D. Mohammed
    • 1
  • A. C. Taylor
    • 1
  • S. Sprenger
    • 2
  • D. Egan
    • 3
  1. 1.Department of Mechanical Engineering, South Kensington CampusImperial College LondonLondon UK
  2. 2.Hanse Chemie AGGeesthachtGermany
  3. 3.Noveon Inc.ClevelandUSA

Personalised recommendations