Advertisement

Journal of Materials Science

, Volume 41, Issue 15, pp 5047–5049 | Cite as

Preparation and electrorheology of new mesoporous polypyrrole/MCM-41 suspensions

  • Qilin Cheng
  • Ying He
  • Vladimir Pavlinek
  • Anezka Lengalova
  • Chunzhong Li
  • Petr Saha
Letter

Encapsulation or self-assembly of conducting polymer within the channels of mesoporous silica is one of the ways to prepare new nanostructured materials [1]. The resulting materials may have unique nanostructures and properties controlled by host-guest interactions, as well as new potential applications, such as in nano-scale electronic, optical devices [2] and electrorheological (ER) fluids [3]. For example, stabilization of conducting polyaniline filaments with mobile charge carriers in mesoporous silica (MCM-41) represents a step toward the design of nanometer electronic devices [4]. In this area, Qiu [5] et al. found the impedance of polyaniline/SBA-15 (SBA-15 is another kind of mesoporous silica with larger pore size and thicker pore wall compared to MCM-41) composites more sensitive to humidity than that of bulk polyaniline, and Choi et al. [3] reported a composite material with conducting polyaniline in MCM-41 channels showing interesting ER properties.

Of conducting polymers,...

Keywords

Polyaniline Mesoporous Silica High Resolution Transmission Electron Micrographs High Resolution Transmission Electron Micrographs Shear Stress Dependence 

Notes

Acknowledgement

This work was supported by the National Science Foundation of China (20236020, 20176009); the major basic research project of Shanghai (04DZ14002); the financial support of 973 program (No.2004CB719500). The authors also wish to thank to the Ministry of Education, Youth and Sports of the Czech Republic (MSM 70 88352101) for financial support.

References

  1. 1.
    Cardin DJ (2002) Adv Mater 14:553CrossRefGoogle Scholar
  2. 2.
    Nguyen T, Wu J, Doan V, Schwartz BJ, Tolbert SH (2000) Science 288:652CrossRefGoogle Scholar
  3. 3.
    Cho MS, Choi HJ, Ahn WS (2004) Langmuir 20:202CrossRefGoogle Scholar
  4. 4.
    Wu CG, Bein T (1994) Science 264:1757CrossRefGoogle Scholar
  5. 5.
    Li N, Li XT, Geng WC, Zhang T, Zuo Y, Qiu SL (2004) J Appl Polym Sci 93:1597CrossRefGoogle Scholar
  6. 6.
    Kim YD, Song IC (2002) J Mater Sci 37:501Google Scholar
  7. 7.
    Kim YD, Park DH, (2004) Synth Met 142:147CrossRefGoogle Scholar
  8. 8.
    Wei JH, Shi J, Guan JG, Yuan RZ (2004) J Mater Sci 39:3457CrossRefGoogle Scholar
  9. 9.
    Kim JW, Liu F, Choi HJ, Hong SH, Joo J (2003) Polymer 44:289CrossRefGoogle Scholar
  10. 10.
    Park JH, Lim YT, Park OO (2001) Macromol Rapid Commun 22:616CrossRefGoogle Scholar
  11. 11.
    Choi HJ, Cho MS, Ahn WS (2003) Synth Met 135–136:711CrossRefGoogle Scholar
  12. 12.
    Huo Q, Margolese DI, Clesla U, Demuth DG, Feng P, Gier TE, Sieger P, Leon R, Schuth F, Stucky GD (1994) Nature 378:317CrossRefGoogle Scholar
  13. 13.
    Jang J, Oh JH, Stuck GD (2002) Angew Chem Int Ed 41:4016CrossRefGoogle Scholar
  14. 14.
    Jang J, Yoon H (2003) Adv Mater 15:2088CrossRefGoogle Scholar
  15. 15.
    Branton PJ, Hall PG, Sing KSW, Reichert H, Schuth F, Unger KK (1994) J Chem Soc, Faraday Trans 90:2965CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Qilin Cheng
    • 1
    • 2
  • Ying He
    • 1
  • Vladimir Pavlinek
    • 2
  • Anezka Lengalova
    • 3
  • Chunzhong Li
    • 1
  • Petr Saha
    • 2
  1. 1.Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.Polymer Centre, Faculty of TechnologyTomas Bata University in ZlinZlinCzech Republic
  3. 3.University InstituteTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations