Advertisement

Journal of Materials Science

, Volume 41, Issue 17, pp 5784–5787 | Cite as

Self-assembly of ZnO nanoplates into microspheres

  • Haixia Niu
  • Qing Yang
  • Kaibin Tang
  • Yi Xie
  • Fei Yu
Letter

The chemical fabrication of materials with a controllable size and shape has attracted considerable interest due to the obvious importance of size and shape of materials in determining their properties [1, 2, 3, 4, 5]. Recently, the research on the structures of materials is expanding rapidly to the assembly of nanoparticles into two-dimensional (2-D) or three-dimensional (3-D) ordered superstructures [6, 7, 8]. However, few reports on the self-assembly nanoplates into microspheres have been made to date.

As a wide bandgap semiconductor material with a large excitation binding energy, ZnO has promising applications in catalytic, electrical, optoelectronic and photochemical fields [9, 10, 11]. It is known that the properties of ZnO depend closely on its microstructures, thus its surface area and morphology (how the crystals are stacked) have a crucial role in many applications of ZnO [12]. Therefore, the development of morphologically controllable synthesis of ZnO with different...

Keywords

Scan Electron Microscope Microscopy Representative Transmission Electron Microscopy Image Na2C2O4 Good Structural Stability Zinc Oxalate 

Notes

Acknowledgements

Financial support from Anhui Provincial Natural Science Foundation, the National Natural Science Foundation of China, the Chinese Academy of Sciences, and the Chinese Ministry of Education is gratefully acknowledged. The authors thank Dr. Zhenhua Liang for his helpful discussion.

References

  1. 1.
    Holms J, Johnston KP, Doty RC, Korgel BA (2000) Science 287:471Google Scholar
  2. 2.
    Nirmal M, Dabbousi BO, Bawendi MG, Macklin JJ, Trautman JK, Harris TD, Brus LE (1996) Nature 383:802CrossRefGoogle Scholar
  3. 3.
    Santiago P, Ascencio JA, Mendoza D (2004) Appl Phys A 78:513CrossRefGoogle Scholar
  4. 4.
    Ovidko IA (2002) Science 295:2386CrossRefGoogle Scholar
  5. 5.
    Kuang DB, Xu A, Fang YP, Liu HQ, Frommen C, Fenske D (2003) Adv Mater 15:1747CrossRefGoogle Scholar
  6. 6.
    Wu C, Xie Y, Wang D, Yang J, Li T (2003) J Phys Chem B 107:13583CrossRefGoogle Scholar
  7. 7.
    Abello S, Medina F, Tichit D, Perez-Ramirez J, Cesteros Y, Salagre P, Sueiras JE (2005) Chem Commun 1453Google Scholar
  8. 8.
    Mo MS, Yu JC, Zhang LZ, Li SKA (2005) Adv Mater 17:756CrossRefGoogle Scholar
  9. 9.
    Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R, Choi HJ (2002) Adv Funct Mater 12:323CrossRefGoogle Scholar
  10. 10.
    Yan H, He R, Pham J, Yang P (2003) Adv Mater 15:402CrossRefGoogle Scholar
  11. 11.
    Dong L, Jiao J, Tuggle DW, Petty JM, Elliff SA, Coulter M (2003) Appl Phys Lett 82:1096CrossRefGoogle Scholar
  12. 12.
    Tian ZR, Voigt JA, Liu J, Mckenzie B, Mcdermott MJ, Rodriguez MA, Konishi H, Xu H (2003) Nat Mater 2:821CrossRefGoogle Scholar
  13. 13.
    Park WI, Yi G-C, Kim M, Pennycook SJ (2002) Adv Mater 14:1841CrossRefGoogle Scholar
  14. 14.
    Yan HQ, Johnson J, Law M (2003) Adv Mater 15:1907CrossRefGoogle Scholar
  15. 15.
    Yan HQ, He RR, Johnson J, Law M, Saykally RJ, Yang PD (2003) J Am Chem Soc 125:4728CrossRefGoogle Scholar
  16. 16.
    Tian ZR, Voigt JA, Liu J, Mckenzie B, Mcdermott MJ (2002) J Am Chem Soc 124:12954CrossRefGoogle Scholar
  17. 17.
    Pan ZW, Dai ZR, Wang ZL (2001) Science 291:1947CrossRefGoogle Scholar
  18. 18.
    Wang ZL (2003) Adv Mater 15:432CrossRefGoogle Scholar
  19. 19.
    Li Z, Xiong Y, Xie Y (2003) Inorg Chem 42:8105CrossRefGoogle Scholar
  20. 20.
    Li ZQ, Ding Y, Xiong YJ, Yang Q, Xie Y (2004) Chem Eur J 10:5823CrossRefGoogle Scholar
  21. 21.
    Damen TC, Porto SPS, Tell B (1966) Phys Rev 142:570CrossRefGoogle Scholar
  22. 22.
    Vanheusden K, Warren WL, Seager CH, Tallant DR, Voigt JA, Gnade BE (1996) J Appl Phys 79:7983CrossRefGoogle Scholar
  23. 23.
    Wu JJ, Liu SC (2002) Adv Mater 14:215CrossRefGoogle Scholar
  24. 24.
    Li X, Liu J, Li Y (2003) Mater Chem Phys 80:222CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Haixia Niu
    • 1
    • 2
  • Qing Yang
    • 1
    • 2
  • Kaibin Tang
    • 1
    • 2
  • Yi Xie
    • 1
    • 2
  • Fei Yu
    • 3
  1. 1.Nanomaterials and Nanochemistry, Hefei National Laboratory for Physical Sciences at MicroscaleUniversity of Science and Technology of ChinaHefei, AnhuiP.R. China
  2. 2.Department of ChemistryUniversity of Science and Technology of China Hefei, AnhuiP.R. China
  3. 3.Department of Modern MechanicsUniversity of Science and Technology of ChinaHefei, AnhuiP.R. China

Personalised recommendations