Advertisement

Journal of Materials Science

, Volume 41, Issue 17, pp 5775–5777 | Cite as

The influence of ultrasonic setting on fluoride release from glass polyalkenoate cements

  • N. Rushe
  • M. R. Towler
Letter

Glass polyalkenoate cements (GPCs) are formed by the reaction of an ion leachable alumino-silicate glass with an aqueous solution of poly(alkenoic) acid (PAA). Water is used as the reaction medium. This acid–base reaction, whereby the acid attacks and degrades the glass structure, results in the formation of a hydrogel polysalt matrix [1].

GPCs can be formulated to release fluoride [2, 3] and this can remineralise enamel and softened dentine [4]. Fluoride release and its cariostatic effect will become more important with the increasing use of tooth saving preparation methods, such as tunnel techniques where there is a greater risk of leaving carious dentine behind than with conventional box cavities.

There is extensive literature on fluoride ion (F) release from GPCs [5, 6, 7]. However, there is little consensus on the possible mechanism of release, or the relationship between glass composition and release rates. Kuhn and Wilson [8] hypothesized that Frelease occurs principally by...

Keywords

Cavitation Aluminosilicate Glass Carious Dentine Fluoride Release Glass Polyalkenoate Cement 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of the Enterprise Ireland Technology Development Program (‘Proof of Concept’ phase, PoC/2003/018).

References

  1. 1.
    Crisp S, Wilson AD (1974) Dent J Res 53:1408CrossRefGoogle Scholar
  2. 2.
    Mitra SB (1991) J Dent Res 70:75CrossRefGoogle Scholar
  3. 3.
    Forss H, ibid 72:1257Google Scholar
  4. 4.
    Seppa L (1994) Caries Res 28:406CrossRefGoogle Scholar
  5. 5.
    Cranfield M, Kuhn A, Winter GJ (1982) Dent 10:333CrossRefGoogle Scholar
  6. 6.
    Meyron SD, Smith J (1984) Int Endod J 17:16CrossRefGoogle Scholar
  7. 7.
    Muzynski BL, Greener E, Jameson L, Malone WF (1988) J Prosthetic Dent 60:41CrossRefGoogle Scholar
  8. 8.
    Kuhn AT, Wilson AD (1985) ibid 6:37Google Scholar
  9. 9.
    Hill RG, Debarra E, Griffin S, Henn G, Hatton PV, Devlin AJ, Johal KK, Brook IM (1995) Eng Mater 99–100:315Google Scholar
  10. 10.
    Zollner W, Rudel C. In: Hunt PP (ed) Glass ionomers: the next generation. Internation Smyposia in Dentistry PA, 19103), p 57Google Scholar
  11. 11.
    Turner RT, Francis R, Brown D, Garand J, Hannon KS, Bell NH (1989) Bone Miner Res 4:477CrossRefGoogle Scholar
  12. 12.
    Doherty PJ (1991) Clin Mater 7:335CrossRefGoogle Scholar
  13. 13.
    Meyer U, Szklcewski S, Barckhaus RH, Atkinson M, Jones DD (1993) Biomaterials 14:917CrossRefGoogle Scholar
  14. 14.
    Sasanaluckit P, Abustany KR, Doherty PJ, Williams DF (1993) Biomaterials 14:906CrossRefGoogle Scholar
  15. 15.
    Brook IB, Craig GT, Lamb DJ (1991) Clin Mater 4:295CrossRefGoogle Scholar
  16. 16.
    Stanislawski L, Daniau X, Lautie A, Goldberg M (1998) J Biomed Mater Res 48:277CrossRefGoogle Scholar
  17. 17.
    Muller J, Bruckner G, Kraft E, Herz W (1990) Dent Mater 6:172CrossRefGoogle Scholar
  18. 18.
    Towler MR, Crowley CM, Hill RG (2003) J Mater Sci Lett 22(7):539CrossRefGoogle Scholar
  19. 19.
    Twomey E, Towler MR, Crowley CM, Doyle J, Hampshire S (2004) J Mater Sci 39(14):4631CrossRefGoogle Scholar
  20. 20.
    Towler MR, Bushby AJ, Billington RW, Hill RG (2001) Biomaterials 22(11):1401CrossRefGoogle Scholar
  21. 21.
    Tanner DA, Rushe N, and Towler MR (2005) J Mater Sci Mater Med AcceptedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Materials and Surface Science InstituteUniversity of LimerickLimerickIreland

Personalised recommendations