Advertisement

Journal of Materials Science

, Volume 41, Issue 17, pp 5731–5734 | Cite as

Modeling the effect of particle clustering on the mechanical behavior of SiC particle reinforced Al matrix composites

  • X. Deng
  • N. Chawla
Letter

The degree of clustering of particles has a significant influence on the mechanical behavior of particle reinforced metal matrix composites (MMCs). The clustered particles act as crack initiation sites and generally have a negative effect on tensile strength, ductility, toughness, and fatigue strength of the composite [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Murphy et al. [9] examined the tensile behavior of a 20% SiC particle reinforced Al–Si composite with different degrees of clustering (by controlling the cooling rate during solidification of the composite). It was shown that an increase in particle clustering yielded a higher work hardening rate, with a significant reduction in ductility. It has been suggested that the matrix flow in the particle cluster is significantly constrained, which results in the premature local onset of crack initiation [10, 11, 12].

Very few studies have explicitly modeled the effect of particle clustering [10, 11, 12, 13, 14]. Segurado et al. [10] recently...

Keywords

Metal Matrix Particle Fracture Particle Cluster Finite Element Method Simulation Reinforce Metal Matrix Composite 

References

  1. 1.
    Chawla N, Chawla KK (2005, in press) Metal matrix composites, SpringerGoogle Scholar
  2. 2.
    Lewandowski JJ, Liu C, Hunt WH (1989) Mater Sci Eng A 107:241CrossRefGoogle Scholar
  3. 3.
    Nakagawa AH, Gungor MN (1989) In: Liaw PK, Gungor MN (eds) Fundamental relationships between microstructure and mechanical properties of metal–matrix composites, Warrendale, PA, TMS, pp 127–143Google Scholar
  4. 4.
    Osman TM, Lewandowski JJ, Hunt WH (1990) In: Masounave J, Hamel FG (eds) Fabrication of particulate reinforced metal composites, vol. 1, ASM International, Materials Park OH, p 209Google Scholar
  5. 5.
    Deng X, Piotrowski G, Chawla N, Narasimhan KS (2004) P/M Sci Tech Briefs 6:5Google Scholar
  6. 6.
    Chawla N, Williams JJ, Saha R (2002) J Light Metals 2:215CrossRefGoogle Scholar
  7. 7.
    Chawla N, Davis LC, Andres C, Allison JE, Jones JW (2000) Metall Mater Trans 31A:951CrossRefGoogle Scholar
  8. 8.
    Chawla N, Andres C, Jones JW, Allison JE (1998) Metall Mater Trans 29A:2843CrossRefGoogle Scholar
  9. 9.
    Murphy AM, Howard SJ, Clyne TW (1998) Mater Sci Tech 14:959CrossRefGoogle Scholar
  10. 10.
    Segurado J, Gonzalez C, Llorca J (2003) Acta Mater 51:2355CrossRefGoogle Scholar
  11. 11.
    Mishnaevsky L Jr, Derrien K, Baptiste D (2004) Comp Sci Tech 64:1805CrossRefGoogle Scholar
  12. 12.
    Thomson CIA, Worswick MJ, Pilkey AK, Lloyd DJ (2003) J Mech Phys Solids 51:127CrossRefGoogle Scholar
  13. 13.
    Hutchinson JW, Mcmeeking RM (1993) In: Suresh S, Mortensen A, Needleman A (eds) Fundamentals of metal matrix composites, Butterworth–Heinemann, Boston, p 164Google Scholar
  14. 14.
    Wilkinson DS, Maire E, Embury JD (1997) Mater Sci Eng A233:145CrossRefGoogle Scholar
  15. 15.
    http://rsb.info.nih.gov/ij/Google Scholar
  16. 16.
    Yang N, Boselli J, Sinclair I (2001) J Micros 201:189CrossRefGoogle Scholar
  17. 17.
    Dirichlet GL (1850) J Reine Angew Math 40:209CrossRefGoogle Scholar
  18. 18.
    Chawla N, Ganesh VV, Wunsch B (2004) Scripta Materialia 51:161CrossRefGoogle Scholar
  19. 19.
    Chawla N, Patel BV, Koopman M, Chawla KK, Saha R, Patterson BR, Fuller ER, Langer SA (2003) Mater Charac 49:395CrossRefGoogle Scholar
  20. 20.
    Williams JJ, Piotrowski G, Saha R, Chawla N (2002) Metall Mater Trans 33A:3861CrossRefGoogle Scholar
  21. 21.
    Brechet Y, Embury JD, Tao S, Luo L (1991) Acta Metall Mater 39:1781CrossRefGoogle Scholar
  22. 22.
    Llorca J, Martin A, Ruiz J, Elices M (1993) Metall Trans A 24:1575CrossRefGoogle Scholar
  23. 23.
    Lewis CA, Whiters PJ (1995) Acta Metall Mater 43:3685CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Chemical and Materials Engineering, Fulton School of EngineeringArizona State UniversityTempeUSA

Personalised recommendations