Advertisement

Journal of Materials Science

, Volume 41, Issue 14, pp 4394–4404 | Cite as

Quantitative EFTEM measurement of the composition of embedded particles

  • S. Lozano-PerezEmail author
  • J. M. Titchmarsh
  • M. L. Jenkins
Article

Abstract

The optimisation of parameters is investigated for the compositional analysis of nanometre-sized particles embedded in a matrix by energy-filtered transmission electron microscopy. The specific example of Cu-rich particles in a Fe matrix is used both to model and to explore the experimental limits of detection and characterisation. Modelling of alternative procedures for background extrapolation as a function of the number of pre-edge windows confirmed that greater accuracy in a fixed analysis time is achieved by using more than two pre-edge windows. Further modelling investigated the effects of noise, drift and instrumental blurring of images on the accuracy of particle size and composition measurements. Correction factors were generated for ranges of these artefact amplitudes. The corrections were then applied to experimental data and shown to be both realistic and effective. Determination of particle radius below 1 nm was demonstrated.

Keywords

Total Acquisition Time Data Acquisition Time Average Pixel Intensity Ionisation Edge Drift Amplitude 

Notes

Acknowledgements

We thank the EPSRC, Rolls Royce and the Institute of Nuclear Safety System (INSS), Japan, for support for this work. JMT was further supported by the Royal Academy of Engineering, BNFL and INSS.

References

  1. 1.
    Barashev AV, Golubov SI, Bacon DJ, Flewitt PEJ, Lewis TA (2004) Acta Mate 52:877CrossRefGoogle Scholar
  2. 2.
    Othen PJ, Jenkins ML, Smith GDW, Phythian WJ (1991) Phil Mag Lett 64:383CrossRefGoogle Scholar
  3. 3.
    Lucas GE, Odette GR, Maiti R, Sheckherd JW (1987) 13th International Symposium on Influence of Radiation on Materials Properties, p 379Google Scholar
  4. 4.
    Carter RG, Soneda N, Dohi K, Hyde JM, English CA, Server WL (2001) J Nucl Mater 298:211CrossRefGoogle Scholar
  5. 5.
    Miller MK, Wirth BD, Odette GR (2003) Mater Sci Eng A-Structural Materials Properties Microstructure and Processing 353:133CrossRefGoogle Scholar
  6. 6.
    Vaumousse D, Cerezo A, Warren PJ (2003) Ultramicroscopy 95:215CrossRefGoogle Scholar
  7. 7.
    Ishino S, Chimi Y, Bagiyono, Tobita T, Ishikawa N, Suzuki M, Iwase A (2003) J Nucl Mater 323:354CrossRefGoogle Scholar
  8. 8.
    Scott PM (2000) Corrosion 56:771CrossRefGoogle Scholar
  9. 9.
    Watanabe M, Williams D (2005) Microsc Microanal 11:1362Google Scholar
  10. 10.
    Yaguchi T, Konno M, Kamino T, Kaji K, Ohnishi T, Watanabe M (2005) Microsc Microanal 11:630CrossRefGoogle Scholar
  11. 11.
    Lozano-Perez S, Sha G, Titchmarsh JM, Jenkins ML, Hirosawa S, Cerezo A, Smith GDW (2006) J. Mater. Sci. in press Google Scholar
  12. 12.
    Lozano-Perez S, Titchmarsh JM, Jenkins ML (2006) Ultramicroscopy 106:75CrossRefGoogle Scholar
  13. 13.
    Monzen R, Iguchi M, Jenkins ML (2000) Phil Mag Lett 80:137CrossRefGoogle Scholar
  14. 14.
    Othen PJ, Jenkins ML, Smith GDW (1994) Phil Mag A 70:1CrossRefGoogle Scholar
  15. 15.
    Othen PJ (1992) Thesis, University of OxfordGoogle Scholar
  16. 16.
    Fonda RW, Cassada WA, Shiflet GJ (1992) Acta Metall Mater 40:2539CrossRefGoogle Scholar
  17. 17.
    Egerton RF (1986) Electron energy-loss spectroscopy in the electron microscope. Plenum, New YorkGoogle Scholar
  18. 18.
    Berger A, Kohl H (1993) Optik 92:175Google Scholar
  19. 19.
    Kohl H, Berger A (1995) Ultramicroscopy 59:191CrossRefGoogle Scholar
  20. 20.
    Egerton RF, Wong K (1995) Ultramicroscopy 59:169CrossRefGoogle Scholar
  21. 21.
    Krivanek OL, Kundmann MK, Kimoto K (1995) J Microsc 180:277CrossRefGoogle Scholar
  22. 22.
    Muller DA, Silcox J (1995) Ultramicroscopy 59:195CrossRefGoogle Scholar
  23. 23.
    Egerton RF, Crozier PA (1997) Micron 28:117CrossRefGoogle Scholar
  24. 24.
    Golla U, Kohl H (1997) Micron 28:397CrossRefGoogle Scholar
  25. 25.
    Freitag B, Mader W (1999) J Microsc 194:42CrossRefGoogle Scholar
  26. 26.
    Hofer F, Grogger W, Kothleitner G, Warbichler P (1999) Inst Phys Conf Ser EMAG 1999 161:169Google Scholar
  27. 27.
    Thomas PJ, Midgley PA (2001) Ultramicroscopy 88:179CrossRefGoogle Scholar
  28. 28.
    Grogger W, Schaffer B, Krishnan KM, Hofer F (2003) Ultramicroscopy 96:481CrossRefGoogle Scholar
  29. 29.
    Kothleitner G, Hofer F (2003) Ultramicroscopy 96:491CrossRefGoogle Scholar
  30. 30.
    Watanabe M, Williams DB, Tomokiyo Y (2003) Micron 34:173CrossRefGoogle Scholar
  31. 31.
    Lozano-Perez S, Jenkins MJ, Titchmarsh JM (2005) Microsc Microanal 11:486CrossRefGoogle Scholar
  32. 32.
    Kothleitner G, Hofer F (1998) Micron 29:349CrossRefGoogle Scholar
  33. 33.
    Schaffer B, Grogger W, Kothleitner G (2004) Ultramicroscopy 102:27CrossRefGoogle Scholar
  34. 34.
    Mor JJ (1977) In: Watson GA (ed) Lecture Notes in Mathematics, Springer-Verlag, Berlin, p 105Google Scholar
  35. 35.
    Grogger W, Varela M, Ristau R, Schaffer B, Hofer F, Krishnan KM (2004) J Electron Spectrosc Related Phenom 143:141Google Scholar
  36. 36.
    Unser M, Ellis JR, Pun T, Eden M (1987) J Microsc 145:245Google Scholar
  37. 37.
    Egerton RF, Malac M (2002) Ultramicroscopy 92:47CrossRefGoogle Scholar
  38. 38.
    Rose A (1970) Image Technol 12:13Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • S. Lozano-Perez
    • 1
    Email author
  • J. M. Titchmarsh
    • 1
  • M. L. Jenkins
    • 1
  1. 1.Department of MaterialsUniversity of OxfordOxford UK

Personalised recommendations