Fabrication of nanostructures with different iron concentration by electron beam induced deposition with a mixture gas of iron carbonyl and ferrocene, and their magnetic properties
Article
First Online:
- 135 Downloads
- 13 Citations
Abstract
Electron beam induced deposition (EBID) with a mixture gas of iron carbonyl and ferrocene was carried out to fabricate nanostructures with different iron concentrations in a chamber of a scanning electron microscope. The iron concentration was controlled by changing the ratio of partial pressure of iron carbonyl and ferrocene. Electron holography observation revealed that the remanent magnetic flux density Br values of the nanostructures were also changed depending on the iron concentration.
Keywords
Iron Concentration Ferrocene Iron Carbonyl Phase Jump Stray FieldReferences
- 1.Li SP, Natali M, Lebib A, Pepin A, Chen Y, Xu YB (2002) J Magn Magn Mater 241:447CrossRefGoogle Scholar
- 2.Otani Y, Pannetier B, Nozieres JP, Givord D (1993) J Magn Magn Mater 126:622CrossRefGoogle Scholar
- 3.Koops HWP, Kretz J, Rudolph M, Weber M, Dahm G, Lee KL (1994) Jpn J Appl Phys 33:7099CrossRefGoogle Scholar
- 4.Utke I, Luisier A, Hoffmann P, Laub D, Buffar PA (2002) Appl Phys Lett 81:3245CrossRefGoogle Scholar
- 5.Van Dorp WF, Van Someron B, Hagen CW, Kruit P, Crozier PA (2005) Nano Letts 5:1303CrossRefGoogle Scholar
- 6.Mitsuishi K, Shimojo M, Han M, Furuya K (2003) Appl Phys Lett 83:2064CrossRefGoogle Scholar
- 7.Takeguchi M, Shimojo M, Furuya K (2005) Nanotechnology 16:1321CrossRefGoogle Scholar
- 8.Shimojo M, Mitsuishi K, Tameike A, Furuya K (2004) J Vac Sci Technol B 22:742CrossRefGoogle Scholar
- 9.Mitsuishi K, Liu ZQ, Shimojo M, Han M, Furuya K, (2005) Ultramicroscopy 103:17CrossRefGoogle Scholar
- 10.Tanaka M, Shimojo M, Mitsuishi K, Furuya K (2004) Appl Phys A 78:543CrossRefGoogle Scholar
- 11.Kunz RR, Mayer TM (1987) Appl Phys Lett 50:962CrossRefGoogle Scholar
- 12.Utke I, Hoffmann P, Berger R, Scandella L (2002) Appl Phys Lett 80:4792CrossRefGoogle Scholar
- 13.Han M, Mitsuishi K, Shimojo M, Furuya K (2004) Phil Mag 84:1281CrossRefGoogle Scholar
- 14.Shimojo M, Takeguchi M, Tanaka M, Mitsuishi K, Furuya K (2004) Appl Phys A 79:1869CrossRefGoogle Scholar
- 15.Takeguchi M, Shimojo M, Furuya K (2005) Jpn J Appl Phys 44:5631CrossRefGoogle Scholar
- 16.Koops HWP, Kretz J, Rudolphm M, Weber M (1993) J Vac Sci Technol B 11:2386CrossRefGoogle Scholar
- 17.Schossler C, Kaya A, Kretz J, Weber M, Koops HWP (1996) Microel Eng 30:471CrossRefGoogle Scholar
- 18.Rotkina L, Lin J-F, Bird JP (2003) Appl Phys Lett 83:4426CrossRefGoogle Scholar
- 19.Lau YM, Chee PC, Thong JTL, Ng V (2002) J Vac Sci Technol A 20:1295CrossRefGoogle Scholar
- 20.Koops HWP, Kaya A, Weber M (1995) J Vac Sci Technol B 13:2400CrossRefGoogle Scholar
- 21.Liu ZQ, Mitsuishi K, Furuya K (2004) J Appl Phys 96:619CrossRefGoogle Scholar
- 22.Tanaka M, Shimojo M, Takeguchi M, Furuya K (2005) J Crystal Growth 275:2361CrossRefGoogle Scholar
- 23.Ryan MF, Eylen JR, Richardson DE (1992) J Am Chem Soc 114:8611CrossRefGoogle Scholar
- 24.Midgley PA (2001) Micron 32:167CrossRefGoogle Scholar
- 25.Biskupek J, Kaiser U, Lichte H, Lenk A, Gemming T, Pasold G, Witthuhn W (2005) J Magn Magn Mater 293:924CrossRefGoogle Scholar
- 26.Hillyard S, Silcox J (1995) Ultramicroscopy 58:6CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC 2006