In-situ TEM straining experiments of Al films on polyimide using a novel FIB design for specimen preparation
- 345 Downloads
- 23 Citations
Abstract
In-situ transmission electron microscopy (TEM) straining experiments are tedious to perform but give invaluable insight into the deformation processes of materials. With the current interest in mechanical size-effects of nanocrystalline materials and thin metallic films, in-situ tensile testing in the TEM is the key method for identifying underlying deformation mechanisms. In-situ TEM experiments can be significantly simplified using well-designed specimens. The advantages of a novel focussed ion beam design and first in-situ straining results of 500-nm thick single-crystalline Al films on polyimide are reported and compared to conventionally prepared Al films on polyimide.
Keywords
Polyimide Transmission Electron Microscopy Sample Interfacial Dislocation Conventional Transmission Electron Microscopy Tensile Testing SampleNotes
Acknowledgements
GD thanks Dr. T. Wagner and his team from the Max-Planck-Institut für Metallforschung, Stuttgart, for growth of the Al films on NaCl substrates and P. Gruber from the Department Metallkunde, University of Stuttgart, for deposition of the polyimide coating. The experiments were mainly performed, while GD was working at the Max-Planck-Institut für Metallforschung in Stuttgart. Dr. Sang Ho Oh is thanked for recording the image presented in Fig. 4. Support by Prof. E. Arzt for this research project is gratefully acknowledged.
References
- 1.Nix WD (1989) Metall Trans A 20:2217CrossRefGoogle Scholar
- 2.Arzt E (1998) Acta Mater 46:5611CrossRefGoogle Scholar
- 3.Arzt E, Dehm G, Gumbsch P, Kraft O, Weiss D (2001) Prog Mater Sci 46:283CrossRefGoogle Scholar
- 4.Wall MA, Dahmen U (1998) Microsc Res Tech 42:248CrossRefGoogle Scholar
- 5.Jin M, Minor AM, Stach EA, Morris JW Jr (2004) Acta Mater 52:5381CrossRefGoogle Scholar
- 6.Haque MA, Saif MTA (2005) J Mater Res 20:1769CrossRefGoogle Scholar
- 7.Giannuzzi LA, Stevie FA (1999) Micron 30:197CrossRefGoogle Scholar
- 8.Langford RM, Pettford-Long AK (2001) J Vac Sci Technol A 19:2186CrossRefGoogle Scholar
- 9.Volkert CA, Heiland B, Kauffmann F (2003) Prakt Metallogr 40:193Google Scholar
- 10.Field RD, Papin PA (2004) Ultramicroscopy 102:23CrossRefGoogle Scholar
- 11.Dehm G, Inkson BJ, Wagner T (2002) Acta Mater 50:5021CrossRefGoogle Scholar
- 12.Couret A, Crestou J, Farenc S, Molenat G, Clement N, Coujou A, Caillard D (1993) Microsc Microanal Microstruct 4:153CrossRefGoogle Scholar
- 13.Henning CAO, Boswell FW, Corbett JM (1975) Acta Metall 23:177CrossRefGoogle Scholar
- 14.Dieter GE (1988) Mechanical metallurgy. McGraw-Hill, London, p 178; p 49Google Scholar
- 15.Hattar K, Han J, Saif MTA, Robertson IM (2005) J Mater Res 20:1869CrossRefGoogle Scholar
- 16.Freund LB (1987) J Appl Mech 43:553CrossRefGoogle Scholar
- 17.Inkson B, Dehm G, Wagner T (2000) In: Gemperlova J, Varva I (eds) Proceedings of the 12th European congress on electron microscopy, vol. 2, Brno, Czech Republic, June 2000. Czechoslovak Society for Electron Microscopy, Brno, p 539Google Scholar
- 18.Dehm G, Inkson BJ, Balk TJ, Wagner T, Arzt E (2001) Mat Res Soc Symp Proc 673:P.2.6.1CrossRefGoogle Scholar
- 19.McCarty ED, Hackney SA (1995) Mater Sci Eng A 196:119CrossRefGoogle Scholar
- 20.Müllner P, Arzt E (1998) Mat Res Soc Symp Proc 505:149CrossRefGoogle Scholar
- 21.Dehm G, Arzt E (2000) Appl Phys Lett 77:1126CrossRefGoogle Scholar
- 22.Nowak DE, Thomas O, Baker SP, Stach EA, Balzuweit K, Dahmen U (2002) Mat Res Soc Symp Proc 695:L1.2.1Google Scholar
- 23.Inkson BJ, Dehm G, Wagner T (2002) Acta Mater 50:5033CrossRefGoogle Scholar
- 24.von Blanckenhagen B, Gumbsch P, Arzt E (2003) Phil Mag Lett 83:1CrossRefGoogle Scholar