Journal of Materials Science

, Volume 41, Issue 14, pp 4554–4560 | Cite as

Contribution of dynamic charging effects into dopant contrast mechanisms in silicon

  • Yuli ChakkEmail author
  • Dror Horvitz


In this work, SEM capability for imaging of both p- and n-doped regions in Si was demonstrated. The best dopant contrast was found when the primary electron range (R) is comparable or larger than the maximum escape depth of secondary electrons (∼5λ) (λ stands for mean free path). Beyond this scale (< 5λ, > > 5λ) the contrast between p-, n-doped and intrinsic regions gradually disappears. The dopant profiles obtained by SEM were judged using scanning capacitance microscopy (SCM), dopant selective etch (DSE) and secondary ion mass spectrometry (SIMS) measurements, and excellent matching was demonstrated. A novel dopant contrast mechanism incorporating dynamic charging effects that take place during e-beam/specimen interaction is suggested. Under threshold steady-state imaging conditions, an Ebi field in Si near the surface region is formed. This field, governed by secondary electron (SE) emission and trapping of some incident and generated SE, accelerates electrons towards the surface in p-type regions and decelerates them in n-type regions, compared with the intrinsic material. This results in the observed dopant contrast: C(n) < C(i) < C(p). Use of the SEM for 2D-dopant imaging provides many advantages; giving fast results, covering a wide range of dopant concentrations, applicable to real devices, and does not require sample preparation needed by SCM and DSE. In addition, SEM-dopant contrast data quantification is possible using SIMS standards which needs to be defined with more details.


Secondary Electron Primary Electron Interaction Volume Dopant Profile Secondary Electron Emission 



The authors wish to thank E. Kaganer for the SIMS measurements and I. Vidoshinsky for his help with the dopant selective etching recipe development.


  1. 1.
    National Technology Roadmap for Semiconductors (1997) Semiconductor Industry Association, San Jose, CAGoogle Scholar
  2. 2.
    Dowsett MG (1997) In: Gillen G, Larea R, Bennet J, Steve F (eds) Proceedings of the SIMS XI Conference. Wiley, ChichesterGoogle Scholar
  3. 3.
    Barrett M, Dennis M, Tiffin D, Li Y, Shih K (1995) IEEE Electron Device Lett 16:118CrossRefGoogle Scholar
  4. 4.
    Gong L, Petersen S, Frey L, Ryssel H (1995) Nucl Instrum Methods Phys Res B 96:133CrossRefGoogle Scholar
  5. 5.
    Neubauer G, Lawrence M, Dass A, Johnson TJ (1992) Mater Res Soc Symp Proc 286:283CrossRefGoogle Scholar
  6. 6.
    Mahaffy R, Shih K, Edwards H (2000) J Vac Sci Technol B 18(1):566CrossRefGoogle Scholar
  7. 7.
    De Wolf P, Stephenson R, Trenkler T, Clarysse T, Hantschel T, Vandervorst W (2000) J Vac Sci Technol B 18(1):361CrossRefGoogle Scholar
  8. 8.
    Duhayon N, Clarysse T, Eyben P, Vandervorst W, Hellemans L (2002) J Vac Sci Technol B 20(2):741CrossRefGoogle Scholar
  9. 9.
    Smoliner J, Basnar B, Golka S, Gornik E, Loffler B, Schatzmayr M, Enichlmair H (2001) Appl Phys Lett 79(19):3182CrossRefGoogle Scholar
  10. 10.
    O’Malley ML, Timp GL, Moccio SV, Garno JP, Kleiman RN (1999) Appl Phys Lett 74(2):272CrossRefGoogle Scholar
  11. 11.
    Stephenson R, De Wolf P, Trenkler T, Hantschel T, Clarysse T, Jansen P, Vandervorst W (2000) J Vac Sci Technol B 18(1):555CrossRefGoogle Scholar
  12. 12.
    Perovich DD, Castell MR, Howie A, Lavoie C, Tiedje T, Cole JSW (1995) Ultramicroscopy 58:104CrossRefGoogle Scholar
  13. 13.
    Venables D, Jain H, Collins DC (1998) J Vac Sci Technol B 16(1):362CrossRefGoogle Scholar
  14. 14.
    Schonjahn C, Broom RF, Humphreys CJ, Howie A, Mentink SAM (2003) Appl Phys Lett 83(2):293CrossRefGoogle Scholar
  15. 15.
    Sealy CP, Castell MR, Wilshaw PR (2000) J Electron Micros 49(2):311CrossRefGoogle Scholar
  16. 16.
    Mullerova I, El-Gomati MM, Frank L (2002) Ultramicroscopy 938:223CrossRefGoogle Scholar
  17. 17.
    El-Gomati MM, Wells TCR (2001) Appl Phys Lett 79(18):2931CrossRefGoogle Scholar
  18. 18.
    Joy DC (1987) J Microsc 147(1):51CrossRefGoogle Scholar
  19. 19.
    Dionne GF (1973) J Appl Phys 44(12):5361CrossRefGoogle Scholar
  20. 20.
    Lye RG, Dekker AJ (1957) Phys Rev 107(4):977CrossRefGoogle Scholar
  21. 21.
    Seiler H (1983) J Appl Phys 54(11)Google Scholar
  22. 22.
    Seiler H (1967) Z Angew Physik 22:249Google Scholar
  23. 23.
    Landau L, Lifshitz EM (1960) Electrodynamics of continuous media. Pergamon, OxfordGoogle Scholar
  24. 24.
    Cazaux J (1999) J Electron Spectroscopy and Rel Phenomena 105:155CrossRefGoogle Scholar
  25. 25.
    Pierret RF (1996) Semiconductor device fundamentals. Addison Wesley LongmanGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Intel Electronics Ltd.Kiryat GatIsrael

Personalised recommendations