Advertisement

Journal of Materials Science

, Volume 41, Issue 14, pp 4477–4483 | Cite as

In situ deformation of silicon nanospheres

  • Julia Deneen
  • William M. Mook
  • Andrew Minor
  • William W. Gerberich
  • C. Barry CarterEmail author
Article

Abstract

As a natural response to the ongoing trend of device miniaturization, many effects of scaling on the properties of materials have become well documented. However, the mechanical properties of individual nanoparticles are not well understood and the direct observation of nanoparticle deformation has only recently been achieved. This work investigates the mechanical behavior of silicon nanospheres in the transmission electron microscope (TEM) using an in situ indentation sample holder. In situ TEM studies provide information which is not accessible by more traditional means, including particle orientation prior to deformation and the type and location of any preexisting defects. In this study, isolated nanoparticles were located and compressed between a diamond tip and a sapphire substrate. Here, the deformation behavior of individual particles is investigated and analogous strain fields between small particles are discussed.

Keywords

Strain Field Scanning Tunneling Microscope Sapphire Substrate Bulk Silicon Silicon Nanoparticles 

Notes

Acknowledgments

This research was funded through NSF grant number CMS0322436. The authors acknowledge support of the staff and facilities at the National Center for Electron Microscopy. We would also like to thank Prof. Steven Girshick and the HPPD research group for provision of the particles, and Prof. Anders Thölén and Dr. Martina Luysberg for helpful discussions.

References

  1. 1.
    Tanner DM, Smith NF, Irwin LW, Eaton WP, Helgesen KS, Clement JJ, Miller WM, Walraven JA, Peterson KA, Tangyunyong P, Dugger MT and Miller SL Tech. Report No. SAND2000–0091 (Sandia National Laboratory, 2000)Google Scholar
  2. 2.
    Arzt E (1998) Acta Mater 46:5611CrossRefGoogle Scholar
  3. 3.
    Brenner SS (1956) J Appl Phys 27:1484CrossRefGoogle Scholar
  4. 4.
    Brenner SS (1957) J Appl Phys 28:1023CrossRefGoogle Scholar
  5. 5.
    Gryanznov VG, Polonsky IA, Romanov AE, Trusov LI (1991) Phys Rev B 44:42CrossRefGoogle Scholar
  6. 6.
    Gryanznov VG, Trusov LI (1993) Prog Mater Sci 37:289CrossRefGoogle Scholar
  7. 7.
    Veprek S (1997) Thin Solid Films 297:145CrossRefGoogle Scholar
  8. 8.
    Veprek S, Mukherjee S, Mannling HD, HE JL (2003) Mater Sci Eng A 340:292CrossRefGoogle Scholar
  9. 9.
    Mook WM, Jungk JM, Cordill MJ, Moody NR, Sun Y, Xia Y, Gerberich WW (2004) Z Metallkd 95:416CrossRefGoogle Scholar
  10. 10.
    Gerberich WW, Mook WM, Perrey CR, Carter CB, Baskes MI, Mukherjee R, Gidwani A, Heberlein JVR, Mcmurry PH, Girshick SL (2003) J Mech Phys Solids 51: 979CrossRefGoogle Scholar
  11. 11.
    Spence JCH (1988) Ultramicroscopy 25:165CrossRefGoogle Scholar
  12. 12.
    Ohnishi H, Kondo Y, Takayanagi K (1998) Surf Sci 415:L1061CrossRefGoogle Scholar
  13. 13.
    Kizuka T (1998) Phys Rev Lett 81:4448CrossRefGoogle Scholar
  14. 14.
    Kizuka T, Yamada K, Deguchi S, Naruse M, Tanaka N (1997) Phys Rev B Condens Matter Mater Phys 55:R7398CrossRefGoogle Scholar
  15. 15.
    Cummings J, Zettl A (2000) Science 289:602CrossRefGoogle Scholar
  16. 16.
    Larsson MW, Wallenberg LR, Persson AI, Samuelson L (2004) Microsc Microanal 10:41CrossRefGoogle Scholar
  17. 17.
    Erts D, Lohmus A, Lohmus R, Olin H (2001) Appl Phys A: Mater Sci Process 72:S71CrossRefGoogle Scholar
  18. 18.
    Wall MA, Barber TW, Dahmen DU (1995) Paper presented at the 53rd Annual MSA Meeting, Kansas City, MissouriGoogle Scholar
  19. 19.
    Wall MA, Dahmen U (1997) Microsc Microanal 3(Suppl. 3):593Google Scholar
  20. 20.
    Stach EA, Freeman T, Minor AM, Owen DK, Cumings J, Wall MA, Chraska T, Hull R, Morris JW, Zettl A, Dahmen U (2001) Microsc Microanal 7:507Google Scholar
  21. 21.
    Minor AM, Morris JW, Stach EA (2001) Appl Phys Lett 79:1625CrossRefGoogle Scholar
  22. 22.
    Minor AM, Lilleodden ET, Stach EA, Morris JW (2002) J Electron Mater 31:958CrossRefGoogle Scholar
  23. 23.
    Rao NP, Lee HJ, Kelkar M, Hansen DJ, Heberlein JVR, Mcmurry PH, Girshick SL (1997) NanoStruct Mater 9:129CrossRefGoogle Scholar
  24. 24.
    Rao NP, Tymiak N, Blum J, Neuman A, Lee HS, Girshick SL, Mcmurry PH, Heberlein J (1998) J Aerosol Sci 29:707CrossRefGoogle Scholar
  25. 25.
    Perrey CR, Lentzen M, Carter CB (2003) Microsc Microanal 9:394Google Scholar
  26. 26.
    Perrey CR, Carter CB, Bentley J, Lentzen M (2003) Microsc Microanal 9:412Google Scholar
  27. 27.
    Perrey CR, Carter CB, Lentzen M (2003) Microsc Microanal 9:958Google Scholar
  28. 28.
    Muhlstein CL, Brown SB, Ritchie RO (2001) J MEMS 10:593CrossRefGoogle Scholar
  29. 29.
    Easterling KE, Thölén AR (1972) Acta Metall 20:1001CrossRefGoogle Scholar
  30. 30.
    Thölén AR (1990) Phase Transitions 24–26:375CrossRefGoogle Scholar
  31. 31.
    Thölén AR, Yao Y (2003) J Colloid Interface Sci 268:362CrossRefGoogle Scholar
  32. 32.
    Thölén AR (2006) J Mater Sci (This issue)Google Scholar
  33. 33.
    Johnson KL, Kendall K., Roberts AD (1971) Proc R Soc London Ser A 324:301CrossRefGoogle Scholar
  34. 34.
    Johnson KL (1958) Br J Appl Phys 9:199CrossRefGoogle Scholar
  35. 35.
    Johnson KL (1985) Contact mechanics. Cambridge University PressGoogle Scholar
  36. 36.
    Nanda KK, Maisels A, Kruis EE, Fissan H, Stappert S (2003) Phys Rev Lett 91:106102/1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Julia Deneen
    • 1
  • William M. Mook
    • 1
  • Andrew Minor
    • 2
  • William W. Gerberich
    • 1
  • C. Barry Carter
    • 1
    Email author
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisUSA
  2. 2.National Center for Electron MicroscopyLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations