Journal of Materials Science

, Volume 41, Issue 14, pp 4512–4522 | Cite as

Quantitative characterization of nanoprecipitates in irradiated low-alloy steels: advances in the application of FEG-STEM quantitative microanalysis to real materials

  • M. G. Burke
  • M. Watanabe
  • D. B. Williams
  • J. M. Hyde


The characterization of the solute-enriched features (clusters or nanoprecipitates in irradiated low-alloy steels) requires extremely high spatial and elemental resolution, previously necessitating analysis using atom probe field-ion microscopy. In this investigation, field-emission gun-scanning transmission electron microscope (FEG-STEM) quantitative energy dispersive X-ray (EDX) microanalysis (spectrum imaging) has been applied to the characterization of the irradiation-induced nanoprecipitates in a low-alloy forging steel. Refinements in the EDX data have been possible via the application of multivariate statistical analysis (MSA) to the spectrum images, resulting in significantly reduced noise in the images. Most importantly, MSA permitted the clear identification of other elements in these Ni-enriched nanoprecipitates—including Mn and Cu. The processed X-ray spectrum images also provided direct evidence of the preferential formation of these irradiation-induced features along pre-existing dislocations within the steel, as well as the formation of intragranular nanoprecipitates. This research has provided the first direct X-ray spectrum images of irradiation-induced nanoprecipitates in high Ni A508 Gr4N forging steel, and has demonstrated the significant improvements attainable though the application of MSA techniques to the spectrum images. These results independently confirmed the analyses of the Ni-enriched nanoprecipitates previously conducted by 3D-APFIM, with the performance of the FEG-STEM/EDX technique shown to be comparable to that of the 3D-APFIM technique.


Steel Irradiation damage Scanning transmission electron microscopy Spatial resolution X-ray spectrum image Quantitative thin-film X-ray analysis ζ(Zeta)-factor method Atom probe field-ion microscopy 



The authors wish to acknowledge the support of the National Science Foundation through grants (DMR-0320906 and DMR-0304738) and Bechtel Bettis, Inc.


  1. 1.
    Burke MG, Brenner SS (1986) J Physique 34(C2):239Google Scholar
  2. 2.
    Burke MG, Stofanak RJ, Hyde JM, English CA, Server WL (2001) In: Was GS (ed) Proc. 10th Intl. Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, NACE, CDGoogle Scholar
  3. 3.
    Blavette D, Deconihout B, Bostel A, Sarrau JM, Bouet M, Menand A (1993) Rev Sci Instrum 64:2911CrossRefGoogle Scholar
  4. 4.
    Cerezo A, Godfrey TJ, Smith GDW (1988) Rev Sci Instrum 59:862CrossRefGoogle Scholar
  5. 5.
    Miller MK, Cerezo A, Hetherington MG, Smith GDW (1996) Atom probe field-ion microscopy. Oxford University Press, New YorkGoogle Scholar
  6. 6.
    Miller MK (2000) Atom probe tomography. Kluwer Academic Publishers, New YorkCrossRefGoogle Scholar
  7. 7.
    Kelly TF, Gribb TT, Olson JD, Martens RL, Shepard JD, Wiener SA, Kunicki TC, Ulfig RM, Lenz DR, Strennen EM, Olman E, Bunton JH, Strait DR (2004) Microsc Microanal 10:373CrossRefGoogle Scholar
  8. 8.
    Miller MK (2005) Microsc Microanal 11(Suppl. 2):628Google Scholar
  9. 9.
    Miller MK, Burke MG (1992) J Nucl Matter 195:68CrossRefGoogle Scholar
  10. 10.
    Pareige P, Auger P, Miloudi S, van Duysen JC, Akamatsu M (1997) Ann Phys C2–22(117–124):8Google Scholar
  11. 11.
    Hyde JM, English CA, (2001) Mater Res Soc Symp Proc 650:R6.61Google Scholar
  12. 12.
    Jeanguillaume C, Colliex C (1989) Ultramicroscopy 28:252CrossRefGoogle Scholar
  13. 13.
    Hunt JA, Williams DB, (1991) Ultramicroscopy 38:47CrossRefGoogle Scholar
  14. 14.
    Jolliffe IT (2002) Principal component analysis. 2nd edn. Springer, New YorkGoogle Scholar
  15. 15.
    Malinowski ER (2002) Factor analysis in chemistry. 3rd edn. Wiley, New YorkGoogle Scholar
  16. 16.
    Trebbia P, Bonnet N (1990) Ultramicroscopy 34:165CrossRefGoogle Scholar
  17. 17.
    Titchmarsh JM, Dumbill S (1996) J Microsc 184:195CrossRefGoogle Scholar
  18. 18.
    Titchmarsh JM (1999) Ultramicroscopy 78:241CrossRefGoogle Scholar
  19. 19.
    Kotula PG, Keenan MR, Michael JR (2003) Microsc Microanal 9:1CrossRefGoogle Scholar
  20. 20.
    Fiori CE, Swyt CR, Myklebust RL (1992) NIST/NIH Desk top spectrum analyzer, available from the National Institute of Standards and Technology Gaithersburg, MD 20899, USA, (1992). ( Scholar
  21. 21.
    Watanabe M, Williams DB (1999) Microsc Microanal 5(Suppl. 2):88Google Scholar
  22. 22.
    Watanabe M, Williams DB (2003) Z Metallk 94:307CrossRefGoogle Scholar
  23. 23.
    Watanabe M, Williams DB (2006) J Microsc 221:89CrossRefGoogle Scholar
  24. 24.
    Reed WP (1993) Certificate of analysis for standard reference material 2063a. National Institute of Standards and Technology, Gaithersburg, MD 20899, USAGoogle Scholar
  25. 25.
    Cochran RN, Horne FH (1977) Anal Chem 49:846CrossRefGoogle Scholar
  26. 26.
    Keenan MR, Kotula PG (2004) Surf Interface Anal 36:203CrossRefGoogle Scholar
  27. 27.
    Keast VJ, Williams DB (2000) J Microsc 199:45CrossRefGoogle Scholar
  28. 28.
    Doig P, Flewitt PEJ (1982) Metal Trans A 13:1397CrossRefGoogle Scholar
  29. 29.
    van Cappellan E, Schmitz A (1992) Ultramicroscopy 41:193CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • M. G. Burke
    • 1
  • M. Watanabe
    • 2
  • D. B. Williams
    • 2
  • J. M. Hyde
    • 3
  1. 1.Bechtel Bettis, Inc.West MifflinUSA
  2. 2.Department of Materials Science and Engineering/Center for Advanced Materials and NanotechnologyLehigh UniversityBethlehemUSA
  3. 3.Department of MaterialsUniversity of OxfordOxfordUK

Personalised recommendations