Effect of lithium additive on the microstructure and electrical responses of 0.9PMN–0.1PT ceramics
- 90 Downloads
- 3 Citations
Abstract
Structural effects of lithium additive on 0.9PMN–0.1PT powders prepared by Ti-modified columbite route were studied. The substitution of Li+ ions for Mg2+ ions in the B-site sub-lattice of 0.9PMN–0.1PT perovskite structure was explained in terms of lead and oxygen vacancies generation originated as consequence of the ionic compensation of negatively charged Li′Mg sites. The rise in mass transport as consequence of the increasing of Pb2+ and O2− vacancies produces more agglomerated particles during the powder synthesis and changes the mechanical characteristics between grain and grain boundary of sintered ceramic. The relation between Km and Tm values, the difference between ionic radii of B cation and the molar volume were used to explain the changes in the relaxor behavior and diffusiveness of phase transition as function of lithium doping, which are corroborated by the results obtained through the ferroelectric characterization.
Keywords
Lithium Perovskite Perovskite Structure Relaxor Behavior PbO2Notes
Acknowledgements
The authors thank FAPESP and Capes Brazilian agencies for the financial support.
References
- 1.Pastor XM, Bajpai PK, Choudhary RNP (2005) Bull Mater Sci 28(3):199CrossRefGoogle Scholar
- 2.Chen YH, Uchino K, Shen M, Viehland D (2001) J Appl Phys Soc 90(3):1455CrossRefGoogle Scholar
- 3.Koval V, Briancin J (2003) Ceram Silik 47(1):8Google Scholar
- 4.Yimnirun R, Ananta S, Meechoowas E, Wongsaenmai S (2003) Phys D: Appl Phys 36(13):1615CrossRefGoogle Scholar
- 5.Takesue N, Fuji Y, You H (2002) Ferroelectr 270:1335CrossRefGoogle Scholar
- 6.Zhang R, Peng S, Xido D, Wang Y, Yang B, Zhu J, Yu P, Zhang W (1998) Cryst Res Techol 33(5):827CrossRefGoogle Scholar
- 7.Gu H, Shih WY, Shih W-H (2003) J Am Ceram Soc 86(2):217CrossRefGoogle Scholar
- 8.Swartz SL, Shrout TR (1982) Mat Res Bull 17:1245CrossRefGoogle Scholar
- 9.Bouquin O, Lejeune M, Boilot JP (1991) J Am Ceram Soc 74(5):1152CrossRefGoogle Scholar
- 10.Ring TA (1996) Fundamentals of ceramic powder processing and synthesis. Academic, San Diego, USACrossRefGoogle Scholar
- 11.Bruno JC, Cavalheiro AA, Zaghete MA, Cilense M, Varela JA (2004) Mater Chem Phys 84(1):120CrossRefGoogle Scholar
- 12.Cavalheiro AA, Zaghete MA, Cilense M, Villegas M, Fernández JF, Varela JA (2004) Bol Esp Ceram Vídrio 43(3):653CrossRefGoogle Scholar
- 13.Bruno JC, Cavalheiro AA, Zaghete MA, Cilense M, Varela JA (2005) Mater Sci Forum 498–499:642CrossRefGoogle Scholar
- 14.Shannon RD (1976) Acta Crys A32:751CrossRefGoogle Scholar
- 15.Fanning DM, Robinson IK, Jung ST, Colla EV, Viehland DD, Payne DA (2000) J Appl Phys 87(2):840CrossRefGoogle Scholar
- 16.Lee K-M, Janga HM (1997) J Mater Res 12(6):1614CrossRefGoogle Scholar
- 17.Che J, Yao X (2004) Ceram Int 30:1377CrossRefGoogle Scholar
- 18.Bruno JC, Cavalheiro AA, Zaghete MA, Varela JA (2006) Ceram Int 32(2):189CrossRefGoogle Scholar
- 19.Zhang QM, You H, Mulvihill ML, Jang SJ (1996) Solid State Commun 97(8):693CrossRefGoogle Scholar