Journal of Materials Science

, Volume 41, Issue 17, pp 5712–5717 | Cite as

Multiphase niobium aluminides fabricated via reaction synthesis

  • E. J. MinayEmail author
  • I. Pong
  • H. B. McShane
  • R. D. Rawlings
Niobium aluminides have been considered as a potential high temperature structural material [ 1, 2, 3]. They are expected to exhibit high elastic stiffness, strength and creep resistance at elevated temperatures. One of the notable advantages of niobium aluminides are the high melting points (which can be seen on the phase diagram in Fig.  1) compared to those of other, more commonly considered aluminide systems. Titanium and nickel alumindes are generally limited to structural applications below 1000 °C [ 5, 6], however, niobium aluminides can have extremely high strength even above 1200 °C and the incorporation of ductile reinforcements of metallic niobium can be used to lower the ductile to brittle transition temperatures and increase room temperature fracture toughness [ 1]. However, melting and casting of niobium aluminides presents several difficulties due to the high temperatures required, high evaporation rate of aluminium and the wide difference in the melting points and...


Niobium Intermetallic Phasis Nb3Al Zinc Stearate High Temperature Structural Material 



One of the authors (I. Pong) would like to thank his parents for financial support during this work.


  1. 1.
    Hanada S (1997) Curr Opin Solid State Mater 2:279CrossRefGoogle Scholar
  2. 2.
    Gnanamoorthy R, Hanada S (1996) Mater Sci Eng A 207:129CrossRefGoogle Scholar
  3. 3.
    Tabaru T, Hanada S (1998) Intermetallics 6:735CrossRefGoogle Scholar
  4. 4.
    ASM handbook Alloy phase diagrams, Vol 3Google Scholar
  5. 5.
    Tetsui T (1999) Curr Opin Solid State Mater Sci 4:243CrossRefGoogle Scholar
  6. 6.
    Sikka VK, Deevi SC, Viswanathan S, Swindeman RW, Santella ML (2000) Intermetallics 8:1329CrossRefGoogle Scholar
  7. 7.
    Kamata K, Degawa T, Nagashima Y (1993) Proceedings of the first international symposium on structural intermetallics. In: Darolia R, Lewandwski JJL, Liu CT, Martin PL, Miracle DB, Nathal MV (eds) TMS, p 675Google Scholar
  8. 8.
    Dunnand DC (1994) Processing and fabrication of advanced materials III. In: Ravi VA, Srivatsan TS, Moore JJ (eds) TMS, p 771Google Scholar
  9. 9.
    Moore JJ, Feng HJ (1995) Prog Mater Sci 39:275CrossRefGoogle Scholar
  10. 10.
    Morsi K (2001) Mater Sci Eng A 299:1CrossRefGoogle Scholar
  11. 11.
    Minay EJ, Rawlings RD, Mcshane HB (2004) J Mater Process Technol 153–154:630CrossRefGoogle Scholar
  12. 12.
    Gauthier V, Bernard F, Gaffet E, Josse C, Larpin JP (1999) Mater Sci Eng A272:334CrossRefGoogle Scholar
  13. 13.
    Gauthier V, Josse C, Bernard F, Gaffet E, Larpin JP (1999) Mater Sci Eng A265:117CrossRefGoogle Scholar
  14. 14.
    Zhu P, Li JCM, Liu CT (2002) Mater Sci Eng A329–331:57CrossRefGoogle Scholar
  15. 15.
    Bertolino N, Monagheddu M, Tacca A, Giuliani P, Zanotti C, Tamburini UA (2003) Intermetallics 11:41CrossRefGoogle Scholar
  16. 16.
    Dong S, Hou P, Yang H, Zou G (2002) Intermetallics 10:217CrossRefGoogle Scholar
  17. 17.
    Minay EJ, Mcshane HB, Rawlings RD (2004) Intermetallics 12:75CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • E. J. Minay
    • 1
    Email author
  • I. Pong
    • 1
  • H. B. McShane
    • 1
  • R. D. Rawlings
    • 1
  1. 1.Technology & Medicine Imperial College of ScienceLondon UK

Personalised recommendations