Journal of Materials Science

, Volume 41, Issue 17, pp 5709–5711 | Cite as

A simple approach to oxide varistor materials

  • A. B. GlotEmail author

Non-Ohmic conduction is observed in many oxide ceramic semiconductor materials on the basis of ZnO [1], TiO2 [2] and SnO2 [3, 4]. These ceramics are used as varistors—semiconductor devices with nonlinear symmetric current-voltage characteristic (CVC). Varistor ceramics consist of highly conductive grains with grain-boundary potential barriers formed during sintering [1, 2, 3, 4, 5]. Non-Ohmic conduction in ZnO varistors is explained by thermionic emission enhanced by barrier lowering at low fields with a combination of other mechanisms at high fields [5, 6, 7, 8].

However, in spite of a deep understanding of varistor action [ 5, 6, 7, 8, 9, 10], there is no simple analytical expression of CVC related to the mechanism of non-Ohmic conduction. Instead of that the empirical power-law relation
$$ j = BE^\beta , $$


SnO2 Co3O4 Barrier Height Bi2O3 Sb2O3 


  1. 1.
    Matsuoka M, Masuyama T, Iida Y (1970) Suppl J Jpn Soc Appl Phys 39:94Google Scholar
  2. 2.
    Yan JF, Rodes WW (1982) Appl Phys Lett 40:536CrossRefGoogle Scholar
  3. 3.
    Glot AB, Chakk AM, Chernyj BK, Yakunin AYa (1974) Inorganic Mater 10:2177Google Scholar
  4. 4.
    Glot AB, Zlobin AP (1989) Inorganic Mater 25:322Google Scholar
  5. 5.
    Einzinger R (1975) Ber Dt Keram Ges 52:244Google Scholar
  6. 6.
    Mahan GD, Levinson LM, Philipp HR (1979) J Appl Phys 50:2799CrossRefGoogle Scholar
  7. 7.
    Greuter F, Blatter G, Rosinelly M, Stucky F (1989) In: Levinson LM (ed) Advances in varistor technology. Ceramic transactions, vol 3, Am. Ceram. Soc., Westerville, p 31Google Scholar
  8. 8.
    Vanadamme LKJ, Brugman JC (1980) J Appl Phys 51:4240CrossRefGoogle Scholar
  9. 9.
    Gupta TK (1990) J Am Cer Soc 73:1817CrossRefGoogle Scholar
  10. 10.
    Clarke DR (1999) JAm Ceram Soc 82:485CrossRefGoogle Scholar
  11. 11.
    Avdeenko BK, Glot AB, Ivon AI, Chernenko IM, Schelokov AI (1980) Inorganic Mater 16:1310Google Scholar
  12. 12.
    Greuter F, Christen T, Glatz-Reichenbach J (1998) In: Mat. Res. Soc. Symp. Proc. vol 500, Material Research Society, p 235Google Scholar
  13. 13.
    Bowen LJ, Avella FJ (1983) J Appl Phys 54:2764CrossRefGoogle Scholar
  14. 14.
    Trontelj M, Kolar D, Krasevec V (1983) In: Additives and interfaces in electronic ceramics. Advances in ceramics, vol 7, p 107Google Scholar
  15. 15.
    Glot AB, MazurikSV (2000) Inorganic Mater 36:636CrossRefGoogle Scholar
  16. 16.
    Bueno PR, Oliveira MM, Bacelar-Junior WK, Leite ER, Longo E, Garcia-Belmonte G, Bisquert J (2002) J Appl Phys 91:6007CrossRefGoogle Scholar
  17. 17.
    Skuratovsky I, Glot A, Di Bartolomeo E, Traversa E, Polini R (2004) J Eur Ceram Soc 24:2597CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.División de Estudios de PosgradoUniversidad Tecnológica de la MixtecaOaxacaMéxico

Personalised recommendations