Advertisement

Journal of Materials Science

, Volume 42, Issue 3, pp 847–853 | Cite as

Grain boundary engineering of 304 austenitic stainless steel by laser surface melting and annealing

  • Sen YangEmail author
  • Zhan Jie Wang
  • Hiroyuki Kokawa
  • Yutaka S. Sato
Article

Abstract

In order to improve the intergranular corrosion resistance of 304 stainless steel, laser surface remelting experiments were conducted using a 2 kW continuous wave Nd: YAG laser. The grain boundary character distribution (GBCD) and microstructures of the materials were analyzed using EBSD, SEM and OM. The experimental results showed that combination of laser surface melting and annealing on 304 stainless steel resulted in a high frequency of twin boundaries and consequent discontinuity of random boundary network in the materials, which led to an improvement of resistance to intergranular corrosion. The maximum CSL density could reach 88.6% under optimal processing conditions: 1220 K and 28 h.

Keywords

Molten Pool Intergranular Corrosion Abnormal Grain Growth Laser Surface Melting Random Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

One of the authors (S. Yang) is grateful to Japan Society for the Promotion of Science for offering a JSPS fellowship. The authors would like to express their gratitude to Dr. Y. S. Kang, Mr. A. Honda and Mr. Isago for their technical support. The partial support of this work Program for New Century Excellent Talents in University from Ministry of Education of China and Science Foundation of IMUT are also acknowledged.

References

  1. 1.
    Akgun OV, Inal OT (1992) J Mater Sci 27:2147CrossRefGoogle Scholar
  2. 2.
    Conde A, Colaco R, Vilar R, Damborenea Jde (2000) Mater Design 21:441CrossRefGoogle Scholar
  3. 3.
    Anthony TR, Cline HE (1978) J App Phys 49:1248CrossRefGoogle Scholar
  4. 4.
    Akgun OV, Inal OT (1995) J Mater Sci 30:6097CrossRefGoogle Scholar
  5. 5.
    Alexandreanu B, Was GS (2006) Script Mater 54:1047CrossRefGoogle Scholar
  6. 6.
    Lin P, Palumbo G, Erb U, Aust KT (1995) Script Metall Mater 33:1387CrossRefGoogle Scholar
  7. 7.
    Kurban M, Erb U, Aust KT (2006) Script Mater 54:1053CrossRefGoogle Scholar
  8. 8.
    Stickler R, Vinckier (1963) Mem Sci Rew Metall 60:489Google Scholar
  9. 9.
    Trillo EA, Murr LE (1999) Acta Mater 47:225Google Scholar
  10. 10.
    Watanabe T (1984) Res Mechanica 11:47Google Scholar
  11. 11.
    Kokawa H, Watanabe T, Karashima S (1981) Philos Mag A 44:1239CrossRefGoogle Scholar
  12. 12.
    Watanabe T, Tsurekawa S (1999) Acta Mater 47:4171CrossRefGoogle Scholar
  13. 13.
    Lehockey EM, Palumbo G, Lin P (1998) Meatll Trans A 29:3069CrossRefGoogle Scholar
  14. 14.
    Hirata T, Tanabe S, Kohzu M, Higashi K (2003) Script Mater 49:891CrossRefGoogle Scholar
  15. 15.
    Aust KT (1994) Can Metall Quart 33:265CrossRefGoogle Scholar
  16. 16.
    Yamamura S, Tsurekawa S, Watanabe T (2003) Mater Trans 44:1494CrossRefGoogle Scholar
  17. 17.
    Krupp U, Kane WM, Liu XY, Dueber O, Laird C, McMahon CJ (2003) Mater Sci Eng A 349:213CrossRefGoogle Scholar
  18. 18.
    Randle V (1999) Acta Mater 47:4187CrossRefGoogle Scholar
  19. 19.
    Shimada M, Kokawa H, Wang ZJ, Sato YS, Karibe I (2002) Acta Mater 50:2331CrossRefGoogle Scholar
  20. 20.
    Koo JB, Yoon DY (2001) Metall Mater Trans A 32:469CrossRefGoogle Scholar
  21. 21.
    Koo JB, Yoon DY, Henry MF (2002) Metal Trans A 33:3803CrossRefGoogle Scholar
  22. 22.
    Lee SB, Hwang NM, Yoon DY, Henry MF (2000) Metall Trans A 31:985CrossRefGoogle Scholar
  23. 23.
    Yang S, Huang WD, Lin X, Su YP, Zhou YH (2000) Script Mater 42:543CrossRefGoogle Scholar
  24. 24.
    Brandon DG (1966) Acta Metall 14:1479CrossRefGoogle Scholar
  25. 25.
    Majidi AP, Streicher MA (1984) Corrosion 40:584CrossRefGoogle Scholar
  26. 26.
    Kokawa H, Watanabe T, Karashima S (1983) J Mater Sci 18:1183CrossRefGoogle Scholar
  27. 27.
    Pumphrey OH, Gleiter H (1974) Philos Mag 30:593CrossRefGoogle Scholar
  28. 28.
    Kokawa H, Watanabe T, Karashima S (1983) Scripta Metall 17:1155CrossRefGoogle Scholar
  29. 29.
    Fullman RL, Fisher JC (1951) J Appl Phys 22:1350CrossRefGoogle Scholar
  30. 30.
    Bi HY, Kokawa H, Wang ZJ, Shimada M, Sato YS (2003) Script Mater 49:219CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Sen Yang
    • 1
    Email author
  • Zhan Jie Wang
    • 2
  • Hiroyuki Kokawa
    • 2
  • Yutaka S. Sato
    • 2
  1. 1.Department of Materials Science and EngineeringInner Mongolia University of TechnologyHohhotP.R. China
  2. 2.Department of Materials Processing, Graduate School of EngineeringTohoku UniversityAoba-ku, SendaiJapan

Personalised recommendations