Journal of Materials Science

, Volume 41, Issue 14, pp 4623–4631 | Cite as

BaTiO3 (BTO)–CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas

  • A. F. L. Almeida
  • P. B. A. Fechine
  • L. C. Kretly
  • A. S. B. SombraEmail author


The solid state procedure was used to produce bulk ceramics of BTO (BaTiO3), CCTO (CaCu3Ti4O12) and BTO0.5–CCTO0.5 that were studied in the medium-frequency (MF) range (100 Hz–1 MHz) and in the microwave range of frequencies. The presence of BTO is decreasing the dielectric constant (εr) of the BTO–CCTO composite. The CCTO and BTO samples present a strong tendency to the increase of the loss with frequency. The BTO substrates are presenting higher values of the εr in the range of 1–4 GHz (around 140). For pure CCTO the dielectric constant is around 37.6. Similar behaviour observed at the MF range, that the higher dielectric constant is also associated to the higher loss is also present in the microwave region. The study of a planar microstrip antenna, that uses the BTOX–CCTO(1−X) ceramic as a high εr substrate was done. Therefore, these measurements confirm the potential use of such materials for small high dielectric planar antennas (HDA). These materials are also very promising for capacitor applications and certainly for microelectronics, microwave devices (cell mobile phones for example), where the miniaturization of the devices is crucial.


Dielectric Constant Loss Factor Patch Antenna Microstrip Antenna Microwave Range 



This work was partly sponsored by Ericsson EDB, Ericsson Research Center Brazil, under contracts Ericsson/UFC-06 and UNI.15/00 and by FUNCAP,FINEP, CNPq, CAPES (Brazilian agencies).


  1. 1.
    Subramanian MA, Li D, Duran N, Reisner BA, Sleight AW (2000) J Sol State Chem 151:323CrossRefGoogle Scholar
  2. 2.
    Ramirez AP, Subramanian MA, Gardel M, Blumberg G, Li D, Vogt T, Shapiro SM (2000) Solid State Commun 115:217CrossRefGoogle Scholar
  3. 3.
    Subramanian MA, Sleight AW (2002) Solid State Sci 4:347CrossRefGoogle Scholar
  4. 4.
    Setter N, Colla EL (1993) Ferroelectric ceramics. Birkhauser Verlag Google Scholar
  5. 5.
    Bochu B, Deschizeaux MN, Joubert JC (1979) J Solid State Chem 29:291CrossRefGoogle Scholar
  6. 6.
    Almeida AFL, de Oliveira RS, Góes JC, Sasaki JM, Mendes Filho J, Sombra ASB (2002) Mat Sci Eng B 96:275CrossRefGoogle Scholar
  7. 7.
    de Figueiredo RS, Messai A, Hernandes AC, Sombra ASB (1998) J Mat Sci Lett 17:449CrossRefGoogle Scholar
  8. 8.
    Jha P, Arora P, Ganguli AK (2002) Mat Lett 4179:1Google Scholar
  9. 9.
    Kolev N, Bontchev RP, Jacobson AJ, Popov VN, Hadjiev VG, Litvinchuk AP, Iliev MN (2002) Phys Rev B 66:132102CrossRefGoogle Scholar
  10. 10.
    Music S, Gotic M, Ivanda M, Popovic S, Turkovic A, Trojko R, Sekulic A, Furic K (1997) Mat Sci Eng B 47:33CrossRefGoogle Scholar
  11. 11.
    Lee B, Harackiewicz FJ (2002) IEEE Trans Antennas Propagation 50(8):1160CrossRefGoogle Scholar
  12. 12.
    Balanis EA (1997) Antenna theory—analysis and design, 2nd edn. John Wiley & SonsGoogle Scholar
  13. 13.
    Garg R, Bhartia P, Bahl I, Ittipiboon A (2001) Artech HouseGoogle Scholar
  14. 14.
    In: Buchanan RC (ed) (1991) Ceramic materials for electronics. Marcel Dekker Inc., New York Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2006

Authors and Affiliations

  • A. F. L. Almeida
    • 1
    • 3
  • P. B. A. Fechine
    • 1
    • 3
  • L. C. Kretly
    • 2
  • A. S. B. Sombra
    • 3
    Email author
  1. 1.Departamento de Química Orgânica e Inorgânica, Centro de CiênciasUFCFortalezaBrazil
  2. 2.Departamento de Microondas e Óptica (DMO), Faculdade de Engenharia Elétrica e Computação (FEEC)UNICAMPSaoPauloBrazil
  3. 3.Laboratório de Telecomunicações e Ciência e Engenharia dos Materiais (LOCEM), Departamento de FísicaUFC Campus do PiciFortalezaBrazil

Personalised recommendations