Advertisement

Journal of Materials Science

, Volume 41, Issue 15, pp 4771–4776 | Cite as

Synthesis and catalytic application of zirconium-substituted aminoethyl phosphonate

  • Renquan Zeng
  • Xiangkai Fu
  • Chengbin Gong
  • Yan Sui
Article

Abstract

A new type of zirconium-substituted aminoethyl phosphonate material is prepared and characterized by elemental analysis, ICP, FTIR, XRD, 31P-MAS NMR, TG, DTG and DSC. XRD indicates that the material is amorphous. The 31P-MAS NMR of the material exhibits a single resonance, and thermogravimetry shows that the material has three steps mass loss at temperatures of up to 900 °C. The zirconium phosphonate material as a solid catalyst is investigated in the Knoevenagel condensation of aromatic aldehyde or cyclohexanone with active methylene compounds. The solid catalyst is easily recovered and can be recycled three times without significant loss of its activity. The experimental results imply the catalytic activity of the zirconium phosphonate is different from that of the organic–inorganic hybrid zirconium phosphonate-phosphate.

Keywords

Zirconium Cyclohexanone Aromatic Aldehyde Malononitrile Phosphonic Acid 

References

  1. 1.
    Marti AA, Colon JL (2003) Inorg Chem 42:2830CrossRefGoogle Scholar
  2. 2.
    Parida KM, Sahu BB, Das DP (2004) J Colloid Interf Sci 270:436CrossRefGoogle Scholar
  3. 3.
    Kumar CV, Chaudhari A (2000) J Am Chem Soc 122:830CrossRefGoogle Scholar
  4. 4.
    Costantino U, Nocchetti M, Vivani R (2002) J Am Chem Soc 124:8428CrossRefGoogle Scholar
  5. 5.
    Rodriguez-Castellon E, Jimenez-Jimenez J, Jimenez-Lopez A, Maireles-Torres P, Ramos-Barrado JR, Jones DJ, Roziere J (1999) Solid State Ionics 125:407CrossRefGoogle Scholar
  6. 6.
    Alberti G, Casciola M (2001) Solid State Ionics 145:3CrossRefGoogle Scholar
  7. 7.
    Benftez IO, Bujoli B, Camus LJ, Lee CM, Odobel F, Talham DR (2002) J Am Chem Soc 124:4363CrossRefGoogle Scholar
  8. 8.
    Marcu IC, Sandulescu I, Millet JMM (2002) Appl Catal 227:309CrossRefGoogle Scholar
  9. 9.
    Rocha GO, Johnstone RAW, Hemming BF, Pires PJC, Sankey JP (2002) J Mol Catal A 186:127CrossRefGoogle Scholar
  10. 10.
    Curini M, Montanari F, Rosati O, Lioy E, Margarita R (2003) Tetrahedron Lett 44:3923CrossRefGoogle Scholar
  11. 11.
    Dines MB, Digiacomo PM (1981) Inorg Chem 20:92CrossRefGoogle Scholar
  12. 12.
    Hattori H (1995) Chem Rev 95:537CrossRefGoogle Scholar
  13. 13.
    Ono Y, Baba T (1997) Catal Today 38:321CrossRefGoogle Scholar
  14. 14.
    Yang CY, Clearfield A (1987) React Polym 4:13Google Scholar
  15. 15.
    Fu XK, Luo BK, Lei QY (1991) Chin J Appl Chem 8:5Google Scholar
  16. 16.
    Fu XK, Wen SY, He YQ (1996) Chinese Patent 96117605.9Google Scholar
  17. 17.
    Clearfield A, Wang Z, Bellinghausen P (2002) J Solid State Chem 167:376CrossRefGoogle Scholar
  18. 18.
    Sui Y, Fu XK, Zeng RQ, Ma XB (2004) J Mol Catal A 217:133CrossRefGoogle Scholar
  19. 19.
    Ma XB, Fu XK (2004) J Mol Catal A 208:129CrossRefGoogle Scholar
  20. 20.
    Zeng RQ, Fu XK, Gong CB, Sui Y, Ma XB, Yang XB (2005) J Mol Catal A 229:1CrossRefGoogle Scholar
  21. 21.
    Fu XK, Gong CB, Ma XB, Wen SY (1998) Synth Commun 28:2659CrossRefGoogle Scholar
  22. 22.
    Fu XK, Wen SY, He YQ (1995) Chinese Patent 95111422.0Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Renquan Zeng
    • 1
    • 2
    • 3
  • Xiangkai Fu
    • 2
  • Chengbin Gong
    • 2
  • Yan Sui
    • 1
    • 2
  1. 1.College of ChemistrySichuan UniversityChengduPeople’s Republic of China
  2. 2.College of Chemistry and Chemical EngineeringSouthwest-China Normal UniversityChongqingPeople’s Republic of China
  3. 3.College of RongchangSouthwest-China Agricultural UniversityChongqingPeople’s Republic of China

Personalised recommendations