Advertisement

Journal of Materials Science

, Volume 41, Issue 15, pp 4823–4831 | Cite as

Spatially resolved self-sensing of strain and damage in carbon fiber cement

  • Sihai Wen
  • D. D. L. Chung
Article

Abstract

Spatially resolved self-sensing of strain and damage has been shown in carbon fiber cement under flexure by three-point bending. This involves measurement of the one-dimensional distribution of the DC electrical resistance by the use of surface electrical contacts on the bottom (tension) and top (compression) surfaces. For a span of 290 mm, a spatial resolution of 5 mm has been attained. The bottom surface resistance, which increases reversibly with strain and increases irreversibly with damage, is a more effective indicator of strain and damage (in combination) than the top surface resistance, the oblique resistance or the through-thickness resistance for spatially resolved self-sensing. For sensing without spatial resolution, the oblique resistance is the most effective indicator. For sensing with distinction between strain and damage, the top surface resistance is the most effective indicator.

Keywords

Silica Fume Surface Resistance Fractional Change Segment Versus Compression Surface 

Notes

Acknowledgement

This work was supported in part by U.S. National Science Foundation.

References

  1. 1.
    Chen P-W, Chung DDL, (1996) Compos Part B-Eng 27B:11CrossRefGoogle Scholar
  2. 2.
    Chung DDL, (2002) J Intel Mat Syst Str 13(9):599CrossRefGoogle Scholar
  3. 3.
    Wen S, Chung DDL, (2003) Adv Cem Res 15(3):119CrossRefGoogle Scholar
  4. 4.
    Chung DDL, (2002) J Mater Eng Perform 11(2):194CrossRefGoogle Scholar
  5. 5.
    Wen S, Chung DDL, (2001) Cem Concr Res 31(2):297CrossRefGoogle Scholar
  6. 6.
    Wen S, Chung DDL, (2000) Cem Concr Res 30(8):1289CrossRefGoogle Scholar
  7. 7.
    Fu X, Lu W, Chung DDL, (1998) Carbon 36(9):1337CrossRefGoogle Scholar
  8. 8.
    Fu X, Chung DDL, (1997) Cem Concr Res 27(9):1313CrossRefGoogle Scholar
  9. 9.
    Chen P-W, Chung DDL, (1993) Smart Mater Struct 2:22CrossRefGoogle Scholar
  10. 10.
    Wen S, Chung DDL, (2001) Cem Concr Res 31(4):665CrossRefGoogle Scholar
  11. 11.
    Wen S, Chung DDL, (2005) ACI Mater J 102(4):244Google Scholar
  12. 12.
    Sun M, Mao Q, Li Z (1998) J Wuhan Univ Technol Mater Sci Ed 13(3):58Google Scholar
  13. 13.
    Mao Q, Zhao B, Sheng D, Li Z, (1996) J Wuhan Univ Technol 11(3):41Google Scholar
  14. 14.
    Reza F, Batson GB, Yamamuro JA, Lee JS, (2003) J Mater Civil Eng 15(5):476CrossRefGoogle Scholar
  15. 15.
    Wu Y, Bing C, Keru W, (2003) Mech Mater Eng Sci Exp 172Google Scholar
  16. 16.
    Yao W, Chen B, Wu K, (2003) J Mater Sci Technol 19(3):239Google Scholar
  17. 17.
    Wen S, Chung DDL, J Mater Civil Eng, in pressGoogle Scholar
  18. 18.
    Bontea D-M, Chung DDL, Lee GC, (2000) Cem Concr Res 30(4):651CrossRefGoogle Scholar
  19. 19.
    Fu X, Chung DDL, (1996) Cem Concr Res 26(1):15CrossRefGoogle Scholar
  20. 20.
    Chung DDL, (2003) Mat Sci Eng R 42(1):1CrossRefGoogle Scholar
  21. 21.
    Wen S, Chung DDL, Carbon, in pressGoogle Scholar
  22. 22.
    Chen P-W, Chung DDL, (1995) J Electron Mater 24(1):47CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media,LLC 2006

Authors and Affiliations

  1. 1.Composite Materials Research LaboratoryUniversity at Buffalo State University at New YorkBuffaloUSA

Personalised recommendations