Advertisement

Journal of Materials Science

, Volume 41, Issue 18, pp 6189–6192 | Cite as

Polyaniline stabilized highly dispersed gold nanoparticle: an in-situ chemical synthesis route

  • Kaushik Mallick
  • Mike J. Witcomb
  • Mike S. Scurrell
Letter

Among conducting polymers, polyaniline has been extensively studied due to its high environmental stability, controllable electrical conductivity and interesting redox properties associated with chain nitrogen. Potential applications of polyaniline include organic lightweight batteries [1], microelectronics [2, 3], electrochromic displays [4], electromagnetic shielding [5] and sensors [6, 7, 8, 9].

Polyaniline can be prepared by the electrochemical or chemical oxidation of aniline [10, 11]. Ammonium persulfate is generally used as the oxidizing agent for the preparation of polyaniline from aniline.

The incorporation of metal in the form of nanoparticles in the polymer matrix forms composite materials, which have proved to exhibit improved performances over those of the polymer alone [12].

The preparation of gold nanoparticle–polyaniline composite material has been reported using preformed polyaniline by exploiting the multi-oxidative states of the polymer [13, 14]. Recently, it was...

Keywords

Polyaniline Aniline Gold Nanoparticles Gold Particle HAuCl4 

Notes

Acknowledgments

One of us (KM) thanks the National Research Foundation and the University of the Witwatersrand for the funding of a postdoctoral research fellowship.

References

  1. 1.
    Kaneko M, Nakamura H (1985) J Chem Soc Chem Commun:346Google Scholar
  2. 2.
    Paul EW, Ricco AJ, Wrighton MS (1985) J Phys Chem 89:1441CrossRefGoogle Scholar
  3. 3.
    Chen S-A, Fang Y (1993) Synth Metal 60:215CrossRefGoogle Scholar
  4. 4.
    Kitani A, Yano J, Sasaki K (1986) J Electroanal Chem 209:227CrossRefGoogle Scholar
  5. 5.
    Epstein AJ, Yue J (1991) US Patent No 5237991Google Scholar
  6. 6.
    Svetlicic V, Schmidt AJ, Miller LL (1998) Chem Mater 10:3305CrossRefGoogle Scholar
  7. 7.
    Sukeerthi S, Contracor AQ (1999) Anal Chem 71:2231CrossRefGoogle Scholar
  8. 8.
    Sangodkar H, Sukeerthi S, Srinivasa RS, Lai R, Contractor AQ (1996) Anal Chem 68:779CrossRefGoogle Scholar
  9. 9.
    Liu C-H, Liao K-T, Huang H-J (2000) Anal Chem 72:2925CrossRefGoogle Scholar
  10. 10.
    Genies EM, Boyle A, Lapkowski M, Tsintavis C (1990) Synth Metal 36:139CrossRefGoogle Scholar
  11. 11.
    Lux F (1994) Polymer 35:2915CrossRefGoogle Scholar
  12. 12.
    Gangopadhyay R, De A (2000) Chem. Mater 12:608CrossRefGoogle Scholar
  13. 13.
    Zhou Y, Itoh H, Uemura T, Naka K, Chujo Y (2002) Langmuir 18:277CrossRefGoogle Scholar
  14. 14.
    Wang J, Neoh KG, Kang ET (2001) J Coll Interface Sci 239:78CrossRefGoogle Scholar
  15. 15.
    Selvan ST, Nogami M (1998) Mater Sci Lett 17:1385CrossRefGoogle Scholar
  16. 16.
    Henry MC, Hsueh C-C, Timko BP, Freund MS (2001) J Electrochem Soc 148:D155CrossRefGoogle Scholar
  17. 17.
    Dai X, Tan Y, Xu J (2002) Langmuir 18:9010CrossRefGoogle Scholar
  18. 18.
    Selvakannan PR, Mandal S, Pasricha R, Sastry M (2004) J Colloid Interface Sci 279:124CrossRefGoogle Scholar
  19. 19.
    Sarma TS, Chowdhury D, Paul A, Chattopadhyay A (2002) Chem Commun:1048Google Scholar
  20. 20.
    Kinyanjui JM, Hatchett DW, Smith JA, Josowicz M (2004) Chem Mater 16:3390CrossRefGoogle Scholar
  21. 21.
    Mallick K, Witcomb MJ, Dinsmore A, Scurrell MS (2005) Macromol Rapid Commun 26:232CrossRefGoogle Scholar
  22. 22.
    Tagowska M, Palys B, Jackowska K (2004) Synth Metal 142:223CrossRefGoogle Scholar
  23. 23.
    Wei Z, Zhang Z, Wan M (2002) Langmuir 18:917CrossRefGoogle Scholar
  24. 24.
    Stejskal J, Trchová M, Prokeš J, Sapurina I (2001) Chem Mater 13:4083CrossRefGoogle Scholar
  25. 25.
    Lu X, Yu Y, Chen L, Mao H, Zhang W, Wei Y (2004) Chem Commun:1522Google Scholar
  26. 26.
    Sun X, Dong S, Wang E (2004) Chem Commun:1182Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Kaushik Mallick
    • 1
  • Mike J. Witcomb
    • 2
  • Mike S. Scurrell
    • 1
  1. 1.Molecular Sciences Institute, School of ChemistryUniversity of the WitwatersrandJohannesburgSouth Africa
  2. 2.Electron Microscope UnitUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations