Journal of Materials Science

, Volume 42, Issue 3, pp 908–913 | Cite as

Study of anodization parameters effects on photoconductivity of porous silicon

  • H. Khalili
  • R. S. DarianiEmail author
  • A. MortezaAli
  • V. Daadmehr
  • K. Robbie


We have prepared porous silicon by etching p-type crystalline silicon in different conditions such as: varying electrolyte concentration, current density, and etching time. The primary objective of this research is to develop a scientifically based technique for the measurement of photosensitivity. One such technique involves measuring the photoconductivity of the porous silicon under halogen lamp irradiation. Our photoconductivity measurements agree with photoluminescence measurements in previous work, and demonstrate the direct transition of porous silicon. Varied etching conditions change the peak of photoconductivity from 600 to 520 nm (from 2.13 eV to 2.4 eV) as the porosity of the layer gradually increases, and the photoconductivity band also becomes slightly more intense. The photoconductivity peak shift toward shorter wavelength was interpreted to be the result of band gap widening. We observe two distinct regimes in the time decay of photoconductivity, fast decay and steady state, that arise from the recombination process and electron–hole asymmetry near the Fermi surface. Experimental measurements of photoconductivity give useful information about the band gap, band structure, and variation of transport properties due to the micro-structural porosity created during the etching process.


Porous Silicon Electrolyte Concentration Etching Time Porous Silicon Layer Porous Silicon Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Canham LT (1990) Appl Phys Lett 57:1046CrossRefGoogle Scholar
  2. 2.
    Vakulenko OV, Kondratenko SV (2003) Semiconductor Phys; Quantum Electronics Optoelectronics 6(2):192–196Google Scholar
  3. 3.
    Chen CH, Chen YF (1999) Appl Phys Lett 75:2560CrossRefGoogle Scholar
  4. 4.
    Bomchil G et al (1993) Appl Surf Sci 56/66:394CrossRefGoogle Scholar
  5. 5.
    Frello T, Veje E, Leistiko O (1996) J Appl Phys 79(2):1027–1031CrossRefGoogle Scholar
  6. 6.
    Steiner P, Kozlowski F, Lang W (1993) IEEE Electron Device Lett 14:317CrossRefGoogle Scholar
  7. 7.
    Gorbach TYa, Smertenko PS, Svechnikov SV, Bondarenko VP, Ciach R, Kuzma M (2002) Solar Energy Mater Solar Cells 72:525–532CrossRefGoogle Scholar
  8. 8.
    Dafinei AS, Dafinei AA (1999) J Non-crystalline Solids 245:92–96CrossRefGoogle Scholar
  9. 9.
    Sedlacik R, Oswald J, Herino R (1997) Thin Solid Films 297:64–67CrossRefGoogle Scholar
  10. 10.
    Runyan W, Shaffner T (1998) Semiconductor Measurements and Instrumentation, 2nd edn, McGraw HillGoogle Scholar
  11. 11.
    Lerondel G, Romestain R (1997) Thin Solid Films 297:114–117CrossRefGoogle Scholar
  12. 12.
    Sabet-Dariani R, Haneman D, Hoffman A, Cohen DD (1993) J Appl Phys 73(5):2321–2325CrossRefGoogle Scholar
  13. 13.
    Crisp RS, Haneman D, Sabet-Dariani R (1996) Appl Surf Sci 92:198–203CrossRefGoogle Scholar
  14. 14.
    Canham L MRS Bulletin (1993) 22Google Scholar
  15. 15.
    Sabet-Dariani R, McAlpine NS, Haneman D (1994) J Appl Phys 75(12):8008–8011CrossRefGoogle Scholar
  16. 16.
    Feng ZC, Tsu R (1994) Porous Silicon, World Scientific PublishingGoogle Scholar
  17. 17.
    Mehra RM, Agarwal V, Jain VK, Mathur PC (1998) Thin Solid Films 315:281–285CrossRefGoogle Scholar
  18. 18.
    Xu J, He Z, Chen K, Huang X, Feng D (1999) J Phys Condens Matter 11:1631–1637CrossRefGoogle Scholar
  19. 19.
    Marra DC, Edelberg EA, Naone RL, Aydil ES (1998) J Vacuum Sci Technol A 16(6):3199–3210CrossRefGoogle Scholar
  20. 20.
    Sedlacik R, Karel F, Oswald J, Fejfar A, Pelant I, Kocka (1995) J Thin Solid Films 255:269–271CrossRefGoogle Scholar
  21. 21.
    Di Francia G (1993) Solid State Comm 87:451CrossRefGoogle Scholar
  22. 22.
    Ono H, Gomyou H, Morisaki H, Nozaki S, Show Y, Shimasaki M, Iwase M, Izumi T (1993) J Electrochem Soc 140(12):L180CrossRefGoogle Scholar
  23. 23.
    Menna P, Di Francia G, La Ferrara V (1995) Solar Energy Mater Solar Cells 37:13CrossRefGoogle Scholar
  24. 24.
    Chattopadhyay S, Li X, Bohn PW (2002) J Appl Phys 91:6134CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • H. Khalili
    • 1
  • R. S. Dariani
    • 1
    • 2
    Email author
  • A. MortezaAli
    • 1
  • V. Daadmehr
    • 1
  • K. Robbie
    • 2
  1. 1.Department of PhysicsAlzahra UniversityTehranIran
  2. 2.Department of PhysicsQueen’s UniversityKingstonCanada

Personalised recommendations