Structure, composition and electrical properties of YSZ films deposited by ultrasonic spray pyrolysis
- 421 Downloads
- 17 Citations
Abstract
Yttria-stabilized zirconia (YSZ) films with different yttria concentrations were prepared by ultrasonic spray pyrolysis on Si substrates at 525 °C, using solutions of zirconium and yttrium acetylacetonates in methanol. The chemical composition, structure and electrical properties of the films were studied by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electrochemical impedance spectroscopy (EIS). XPS measurements show that the Y content in the films increases as the Y precursor in the solution increases. Carbon incorporation was also found in the films, although the concentration of this impurity was reduced as the incorporation of Y increased. XRD spectra show that the Zr1−xYxO2−x/2 polycrystalline films have the cubic phase of ZrO2 and fully stabilized 8YSZ (8 at.% Y2O3 + 92 at.% ZrO2), and that their lattice constant increases slightly as the Y content increases. The conductivity of all the as-deposited films as a function of temperature, showed an Arrhenius behavior, and with the exception of the film with the maximum Y content, the activation energies were in the range of 0.98–1.11 eV. The ionic conductivity of one of these films was similar to that measured for a pellet made of the 8YSZ standard powder.
Keywords
Y2O3 Yttrium Stabilize Zirconium Ultrasonic Spray Pyrolysis Y2O3 Content YSZ3 FilmNotes
Acknowledgements
The authors want to thank to L. Baños, J. Camacho and S. Jimenez for technical assistance. This work has been partially supported by DGAPA-UNAM under Project IN109803, and CONACyT-México, under Project 47303-F.
References
- 1.Minh NQ (1993) J Am Ceram Soc 76:563CrossRefGoogle Scholar
- 2.Kozhukharov V, Brashkova N, Ivanova M, Carda J, Machkova M (2002) Bol Soc Esp Cerám Vidrio 41:471CrossRefGoogle Scholar
- 3.Mori T, Drennan J, Lee JH, Li JG, Ikegami T (2002) Solid State Ionics 154–155:529CrossRefGoogle Scholar
- 4.Ralph JM, Schoeller AC, M. Krumpelt (2001) J Mater Sci 36:1161CrossRefGoogle Scholar
- 5.Will J, Mitterdofer A, Kleinlogel C, Perednis D, Gauckler LJ (2000) Solid State Ionics 131:79CrossRefGoogle Scholar
- 6.Di Bartolomeo E, Kaabbuathong N, Grilli ML, Traversa E (2004) Solid State Ionics 171:173CrossRefGoogle Scholar
- 7.Bartolomé JF, Montero I, Díaz M, López-Esteban S, Moya JS, Deville S, Gremillard L, Chevalier J, Fantozzi G (2004) J Am Ceram Soc 87:2282CrossRefGoogle Scholar
- 8.Haering C, Roosen A, Schichl H (2005) Solid State Ionics 176:253CrossRefGoogle Scholar
- 9.Bao W, Zhu W, Zhu G, Gao J, Meng G (2005) Solid State Ionics 176:669CrossRefGoogle Scholar
- 10.Yamamoto O, Arati Y, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakmura Y (1995) Solid State Ionics 79:137CrossRefGoogle Scholar
- 11.Boulc´h F, Dessemond L, Djurado E (2002) Solid State Ionics 154–155:143CrossRefGoogle Scholar
- 12.Hartmanová M, Thurzo I, Jergel M, Bartos J, Kadlec F, Zelezný V, Tunega D, Kundracik F, Chromik S, Brunel M (1998) J Mater Sci 33:969CrossRefGoogle Scholar
- 13.Wanzenberg E, Tietz F, Panjan P, Stöver D (2003) Solid State Ionics 159:1CrossRefGoogle Scholar
- 14.Wanzenberg E, Tietz F, Kek D, Panjan P, Stöver D (2003) Solid State Ionics 164:121CrossRefGoogle Scholar
- 15.Ruddell DE, Stoner BR, Thompson JY (2003) Thin Sold Films 445:14CrossRefGoogle Scholar
- 16.Chevalier S, Kilo M, Borchardt G, Larpin JP (2003) Appl Surf Sci 205:188CrossRefGoogle Scholar
- 17.Meng G, Song H, Dong Q, Peng D (2004) Solid State Ionics 175:29CrossRefGoogle Scholar
- 18.Chiodelli G, Magistris A, Scagliotti M, Parmigiani F (1988) J Mater Sci 23:1159CrossRefGoogle Scholar
- 19.Perednis D, Gaucker LJ (2004) Solid State Ionics 166:229CrossRefGoogle Scholar
- 20.Kosacki I, Rouleau CM, Becher PF, Bentley J, Lowndes DH (2005) Solid State Ionics 176:1319CrossRefGoogle Scholar
- 21.Langlet M, Joubert JC (1993) In: Rao CNR (ed) Chemistry of advanced materials. Blackwell Scientific Publications, Oxford, pp 55–79Google Scholar
- 22.Ortiz A, Alonso JC, Pankov V, Andrade E, Urbiola C (2001) J Electrochem Soc 148:F26CrossRefGoogle Scholar
- 23.Ortiz A, Alonso JC (2002) J Mater Sci Mater Electron 13:7CrossRefGoogle Scholar
- 24.Catañeda L, Alonso JC, Ortiz A, Andrade E, Saniger JM, Bañuelos JG (2002) Mater Chem Phys 77:938CrossRefGoogle Scholar
- 25.Ortiz A, Alonso JC, Haro-Ponoatowski E (2005) J Electron Mater 34:150CrossRefGoogle Scholar
- 26.Keijser TH, Langford JI, Mittemeijer EJ, Vogels ABP (1982) J Appl Cryst 15:308CrossRefGoogle Scholar
- 27.Valvoda V (1992) In: Eckertová L, Ruzicka T (eds) Diagnostics and applications of thin films. IOP Publishing, London, pp 115–132Google Scholar
- 28.Zhang NL, Song ZT, Wan Q, Shen QW, Lin CL (2002) Appl Surf Sci 202:126CrossRefGoogle Scholar
- 29.Wang SJ, Ong CK (2002) Appl Phys Lett 80:2541CrossRefGoogle Scholar
- 30.Hughes AE, Sexton BA (1989) J Mater Sci 24:1057CrossRefGoogle Scholar
- 31.Nasibulin AG, Shurgina LI, Kauppinen EI (2005) Colloid J 67:1CrossRefGoogle Scholar
- 32.Jiang SP, Love JG, Badwal SPS (1997) In: Nowotny J, Sorrell CC (eds) Key Engineering Materials, vol 125–126. Trans Tech Publications, Switzerland, pp 133–162Google Scholar