Advertisement

Journal of Materials Science

, Volume 41, Issue 15, pp 4865–4870 | Cite as

Effects of microstructure on oxygen transport in perovskite-type oxides

  • Qinghua Yin
  • Zhaohui Yang
  • Y. S. Lin
Article

Abstract

La0.1Sr0.9Co0.9Fe0.1O3-δ (LSCF) particulates with different microstructures were prepared and oxygen sorption kinetics on these particulates was studied by a gravimetric method. The surface reaction on the crystallite surface is the rate-limiting step for oxygen sorption in loosely packed LSCF powders. In this case the sorption kinetics can be described by a linear driving force model with crystalline size independent sorption and desorption surface reaction rate constants. Oxygen sorption and transport rates are affected by the intercrystalline (grain boundary) resistance for LSCF particulates prepared with a press-sintering step, and in these cases both crystalline and particulate sizes determine the oxygen sorption rates. Sorption rate constant increases when increases the oxygen partial pressure of the atmosphere surrounding the LSCF samples.

Keywords

Oxygen Partial Pressure Aggregate Size Crystalline Size Sorption Rate Oxygen Permeation 

Notes

Acknowledgements

The authors acknowledge the support of the NSF (CTS-0132694) on this project.

References

  1. 1.
    Dyer PN, Richards RE, Russek SL, Taylor DM (2000) Solid State Ionics 134(1-2):21CrossRefGoogle Scholar
  2. 2.
    MacLean DL, Lin YS, Zeng Y (2000) US Patent 6,059,858Google Scholar
  3. 3.
    Lin YS, Kumakiri I, Nair BN, Alsyouri H (2002) Separ Purif Methods 32(2):229CrossRefGoogle Scholar
  4. 4.
    Teraoka Y, Yoshimatsu M, Yamazoe N, Seiyama T (1984) Chem Lett 6:893CrossRefGoogle Scholar
  5. 5.
    Teraoka Y, Zhang HM, Yamazoe N (1985) Chem Lett 9:1367CrossRefGoogle Scholar
  6. 6.
    Teraoka Y, Zhang HM, Okamoto K, Yamazoe N (1988) Mater Res Bull 23(1):51CrossRefGoogle Scholar
  7. 7.
    Mizusaki J, Yamauchi S, Fueki K, Ishikawa A (1984) Solid State Ionics 12(3):119CrossRefGoogle Scholar
  8. 8.
    Mizusaki J, Yoshihiro M, Yamauchi S, Fueki K (1985) J Solid State Chem 58(2):257CrossRefGoogle Scholar
  9. 9.
    Zhang HM, Shimizu Y, Teraoka Y, Miura N, Yamazoe N (1990) J Catal 121(2):432CrossRefGoogle Scholar
  10. 10.
    Carter S, Selcuk A, Chater RJ, Kajda J, Kilner JA, Steele BCH (1992) Solid State Ionics 53(6):597CrossRefGoogle Scholar
  11. 11.
    Liu LM, Lee TH, Qiu L, Yang YL, Jacobson AJ (1996) Mater Res Bull 31(1):29CrossRefGoogle Scholar
  12. 12.
    Lin YS, Wang WJ, Han JH (1994) AICHE J 40(5):786CrossRefGoogle Scholar
  13. 13.
    Ishigaki T, Yamauchi S, Kishio K, Mizusaki J, Fueki K (1988) J Solid State Chem 73(1):179CrossRefGoogle Scholar
  14. 14.
    Kilner JA, DeSouza RA, Fullarton IC (1996) Solid State Ionics 86(8):703CrossRefGoogle Scholar
  15. 15.
    Tenelshof JE, Lankhorst MHR, Bouwmeester HJM (1997) Solid State Ionics 99(1–2):15CrossRefGoogle Scholar
  16. 16.
    Ten Elshof JE, Lankhorst MHR, Bouwmeester HJM (1997) J Electrochem Soc 144(3):1060CrossRefGoogle Scholar
  17. 17.
    Bouwmeester HJM, Kruidhof H, Burggraaf AJ (1994) Solid State Ionics 72:185CrossRefGoogle Scholar
  18. 18.
    Yang ZH, Lin YS, Zeng Y (2002) Ind Eng Chem Res 41(11):2775CrossRefGoogle Scholar
  19. 19.
    Zeng Y, Tamhankar S, Ramprasad N, Fitch F, Acharya D, Wolf R (2003) Chem Eng Sci 58(3–6):577CrossRefGoogle Scholar
  20. 20.
    Zeng Y, Lin YS (1998) Solid State Ionics 110(3–4):209CrossRefGoogle Scholar
  21. 21.
    Mantzavinos D, Hartley A, Metcalfe IS, Sahibzada M (2000) Solid State Ionics 134(1–2):103CrossRefGoogle Scholar
  22. 22.
    Sahibzada M, Morton W, Hartley A, Mantzavinos D, Metcalfe IS (2000) Solid State Ionics 136:991CrossRefGoogle Scholar
  23. 23.
    Van Hassel BA, Kawada T, Sakai N, Yokokawa H, Dokiya M, Bouwmeester HJM (1993) Solid State Ionics 66(3–4):295CrossRefGoogle Scholar
  24. 24.
    Steele BCH (2000) Solid State Ionics 134(1–2):3CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringArizona State UniversityTempeUSA
  2. 2.Department of Chemical and Materials EngineeringUniversity of CincinnatiCincinnatiUSA

Personalised recommendations