Advertisement

Journal of Materials Science

, Volume 40, Issue 4, pp 875–879 | Cite as

Effect of grain boundary faceting on kinetics of grain growth and microstructure evolution

  • Eugen Rabkin
Grain Boundary and Interface Engineering

Abstract

The Von-Neumann-Mullins relationship for two-dimensional grain growth is modified for the case of grain boundary faceting. It is shown that the anisotropy of grain boundary energy alone slows down the rate of normal grain growth. For highly mobile facets, however, the acceleration of the growth process is possible, accompanied by development of anisotropic microstructure. It is shown that the mean-field approach to the problem of grain growth in highly anisotropic polycrystal results in parabolic growth law similar to that for isotropic systems, with the facet mobility and maximal torque substituting the grain boundary mobility and grain boundary energy in isotropic systems.

Keywords

Polymer Microstructure Anisotropy Torque Growth Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Watanabe, Res. Mechanica 11 (1984) 47.Google Scholar
  2. 2.
    B. W. Krakauer and D. N. Seidman, Acta Mater. 46 (1998) 6145.CrossRefGoogle Scholar
  3. 3.
    M. Takashima, P. Wynblatt and B. L. Adams, Interface Sci. 8 (2000) 351.CrossRefGoogle Scholar
  4. 4.
    U. Wolf, F. Ernst, T. Muschik, M. W. Finnis and H. F. Fischmeister, Phil. Mag. A 66 (1992) 991.Google Scholar
  5. 5.
    A. P. Sutton and R. W. Balluffi “Interfaces in Crystalline Materials” (Clarendon Press, Oxford, 1995).Google Scholar
  6. 6.
    F. J. Humphreys and M. Hatherly “Recrystallization and Related Annealing Phenomena” (Elsevier Science, Kidlington, 1996).Google Scholar
  7. 7.
    A. Kazaryan, Y. Wang, S. A. Dregia and B. R. Patton, Acta Mater. 50 (2002) 2491.Google Scholar
  8. 8.
    S. B. Lee, D. Y. Yoon and M. F. Henry, Acta Mater. 48 (2000) 3071.Google Scholar
  9. 9.
    S. B. Lee, N. M. Hwang, D. Y. Yoon and M. F. Henry, Metall. Mater. Trans. A 31 (2000) 985.Google Scholar
  10. 10.
    J. B. Koo and D. Y. Yoon, Metall. Mater. Trans. A 32 (2001) 469.Google Scholar
  11. 11.
    V. E. Fradkov and D. Udler, Adv. in Phys. 43 (1994) 739.Google Scholar
  12. 12.
    C. Herring, in “The Physics of Powder Metallurgy” edited by W. E. Kingston (McGraw-Hill, New York, 1951) p. 143.Google Scholar
  13. 13.
    J. E. Taylor, Acta Metall. Mater. 40 (1992) 1475.CrossRefGoogle Scholar
  14. 14.
    G. Gottstein and L. S. Shvindlerman “Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications” (CRC Press, Boca Raton, Florida, 1999).Google Scholar
  15. 15.
    R. Wurschum and R. W. Balluffi, Phys. Stat. Sol. A 136 (1993) 323.Google Scholar
  16. 16.
    A. Kebbede, J. Parai and A. H. Carim, J. Amer. Ceram. Soc. 83 (2000) 2845.Google Scholar
  17. 17.
    A. Dakskobler, M. Ceh and T. Kosmac, Key Engng. Mater. 206 (2002) 441.Google Scholar
  18. 18.
    D. W. Hoffman and J. W. Cahn, Surf. Sci. 31 (1972) 368.CrossRefGoogle Scholar
  19. 19.
    A. H. King, Interface Sci. 7 (1999) 251.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Materials Engineering, TECHNIONIsrael Institute of TechnologyHaifaIsrael

Personalised recommendations