Journal of Materials Science

, Volume 40, Issue 4, pp 847–852

Universal features of grain boundary networks in FCC materials

  • C. A. Schuh
  • M. Kumar
  • W. E. King
Grain Boundary and Interface Engineering

Abstract

Grain boundary character distributions and triple junction distributions have been determined for 70 experimental microstructures, comprising aluminum-, copper-, austenitic iron- and nickel-based alloys in a wide variety of processed states. In these FCC metals, the fraction of coincidence site lattice (CSL) boundaries ranges from about 12% (as for a random Mackenzie distribution) to values as high as 75%. Despite wide variations in composition, processing, and grain size, we find that the grain boundary character distribution and triple junction distributions of these materials have striking similarities, and can be described by just a few parameters. This universality arises due to the highly non-random laws that govern the assembly of the grain boundary network, and due to the kinematic limitation that CSL boundaries arise primarily through twinning.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. Schwartz, M. Kumar and B. L. Adams (Eds.), “Electron Backscatter Diffraction in Materials Science” (Kluwer Academic, New York, 2000).Google Scholar
  2. 2.
    M. C. Demirel, A. P. Kuprat, D. C. George, G. K. Straub and A. D. Rollett, Inter. Sci. 10 (2002) 137.Google Scholar
  3. 3.
    A. Kazaryan, Y. Wang, S. A. Dregia and B. R. Patton, Acta Mater. 50 (2002) 2491.CrossRefGoogle Scholar
  4. 4.
    L. J. Gibson and M. F. Ashby “Cellular Solids: Structure & Properties,” Second edition (Pergamon Press, Oxford, 1997).Google Scholar
  5. 5.
    K. Miyazawa, Y. Iwasaki, K. Ito and Y. Ishida, Acta Cryst. A52 (1996) 787.Google Scholar
  6. 6.
    V. Y. Gertsman, Acta Cryst. A57 (2001) 649.Google Scholar
  7. 7.
    V. Y. Gertsman, Acta Cryst. A57 (2001) 369.Google Scholar
  8. 8.
    A. P. Sutton and R. W. Balluffi “Interfaces in Crystalline Materials” (Oxford Science Publication, 1995).Google Scholar
  9. 9.
    M. Frary and C. A. Schuh, Acta Mater. 51 (2003) 3731.CrossRefGoogle Scholar
  10. 10.
    M. Kumar, W. E. King and A. J. Schwartz, Acta Mater. 48 (2000) 2081.Google Scholar
  11. 11.
    C. A. Schuh, M. Kumar and W. E. King, Acta Mater. 51 (2003) 687.CrossRefGoogle Scholar
  12. 12.
    C. A. Schuh, M. Kumar and W. E. King, Zeitschrift für Metallkunde 94 (2003) 323.Google Scholar
  13. 13.
    D. G. Brandon, Acta Metall. 14 (1966) 1479.CrossRefGoogle Scholar
  14. 14.
    M. Deschamps, F. Baribier and A. Marrouche, Acta Metall. 35 (1987) 101.CrossRefGoogle Scholar
  15. 15.
    G. Palumbo and K. T. Aust in “Materials Interfaces,” edited by D. Wolf and S. Yip (Chapman and Hall, London, 1992) p. 190.Google Scholar
  16. 16.
    G. Palumbo, E. M. Lehockey and P. Lin, JOM 50 (1998) 40.Google Scholar
  17. 17.
    T. Watanabe, Res Mechanica 11 (1984) 47.Google Scholar
  18. 18.
    T. Watanabe, Mater. Sci. Eng. A176 (1994) 39.Google Scholar
  19. 19.
    E. M. Lehockey, G. Palumbo and P. Lin, Metall. Mater. Transac. 29A (1998) 3069.Google Scholar
  20. 20.
    D. Horton, C. B. Thomson and V. Randle, Mater. Sci. Eng. A203 (1995) 408.Google Scholar
  21. 21.
    M. Kumar, A. J. Schwartz and W. E. King, Acta Mater. 50 (2002) 2599.CrossRefGoogle Scholar
  22. 22.
    R. L. Fullman and J. C. Fisher, J. Appl. Phys. 22 (1951) 1350.CrossRefGoogle Scholar
  23. 23.
    V. Randle, Acta Mater. 47 (1999) 4187.CrossRefGoogle Scholar
  24. 24.
    V. Y. Gertsman and K. Tangri, Acta Metallurgica et Materialia 43 (1995) 2317.Google Scholar
  25. 25.
    G. Palumbo, K. T. Aust, U. Erb, P. J. King, A. M. Brennenstuhl and P. C. Lichtenberger, Physica Status Solidi 131 (1992) 425.Google Scholar
  26. 26.
    V. Y. Gertsman and K. Tangri, J. Mater. Sci. Lett. 10 (1991) 768.CrossRefGoogle Scholar
  27. 27.
    V. Y. Gertsman, K. Tangri and R. Z. Valiev, Acta Metallurgica et Materialia 42 (1994) 1785.CrossRefGoogle Scholar
  28. 28.
    P. Davies, V. Randle, G. Watkins and H. Davies, J. Mater. Sci. 37 (2002) 4203.CrossRefGoogle Scholar
  29. 29.
    Y. Pan and B. L. Adams, Scripta Metallurgica et Materialia 30 (1994) 1055.CrossRefGoogle Scholar
  30. 30.
    A. Morawiec, J. A. Szpunar and D. C. Hinz, Acta Metallurgica et Materialia 41 (1993) 2825.CrossRefGoogle Scholar
  31. 31.
    M. Frary and C. A. Schuh, Appl. Phys. Lett. 83 (2003) 3755.Google Scholar
  32. 32.
    R. W. Minich, C. A. Schuh and M. Kumar, Phys. Rev. B 66 (2002) 052101.CrossRefGoogle Scholar
  33. 33.
    C. A. Schuh, R. W. Minich and M. Kumar, Philosoph. Mag. A83 (2003) 711.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • C. A. Schuh
    • 1
  • M. Kumar
    • 2
  • W. E. King
    • 2
  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyUSA
  2. 2.Lawrence Livermore National Laboratory, Materials Science and Technology DivisionUniversity of CaliforniaUSA

Personalised recommendations