Journal of Materials Science

, Volume 41, Issue 1, pp 199–210

Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3

Article

Abstract

We review the most interesting aspects of the domain structure kinetics in ferroelectrics important for “domain engineering” and discuss them in the framework of a unified nucleation approach. In our approach the nucleation rate is determined by the local value of electric field produced not only by bound charges and voltage applied to the electrodes, but also by screening charges. As a result, any kinetically produced domain pattern, even being far from the equilibrium, can be stabilized by bulk screening. The domain evolution represents a self-organizing process in which the screening of polarization plays the role of feedback. The general approach was applied for the description of the domain kinetics in lithium niobate and lithium tantalate as the most versatile materials for applications. The revealed original scenarios of the domain structure evolution are attributed to the retardation of the screening processes. The decisive role of screening effectiveness for shapes of individual domains and scenarios of the sideways domain wall motion is demonstrated both experimentally and by computer simulation. The possibility to produce a self-assembled nano-scale domain structures with controlled periods has been shown.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. BYER, J. Nonlinear Opt. Phys. & Mater. 6 (1997) 549.CrossRefGoogle Scholar
  2. 2.
    L. E. MYERS, R. C. ECKHARDT, M. M. FEJER, R. L. BYER, W. R. BOSENBERG and J. W. PIERCE, J. Opt. Soc. Am. B 12 (1995) 2102.Google Scholar
  3. 3.
    G. W. ROSS, M. POLLNAU, P. G. R. SMITH, W. A. CLARKSON, P. E. BRITTON and D. C. HANNA, Opt. Lett. 23 (1998) 171.Google Scholar
  4. 4.
    N. G. R. BRODERICK, G. W. ROSS, H. L. OFFERHAUS, D. J. RICHARDSON and D. C. HANNA, Phys. Rev. Lett. 84 (2000) 4345.CrossRefGoogle Scholar
  5. 5.
    M. YAMADA, N. NADA, M. SAITOH and K. WATANABE, Appl. Phys. Lett. 62 (1993) 435.CrossRefGoogle Scholar
  6. 6.
    V. YA. SHUR and E. L. RUMYANTSEV, Ferroelectrics 191 (1997) 319.Google Scholar
  7. 7.
    V. YA SHUR, Phase Transitions 65 (1998) 49.Google Scholar
  8. 8.
    V. YA. SHUR, in Ferroelectric Thin Films: Synthesis and Basic Properties, edited by C. A. Paz de Araujo, J. F. Scott and G. W. Taylor (Gordon and Breach, New York, 1996) p. 153.Google Scholar
  9. 9.
    E. FATUZZO and W. J. MERZ, “Ferroelectricity” (North-Holland Publishing Company, Amsterdam, 1967).Google Scholar
  10. 10.
    V. YA. SHUR, E. L. RUMYANTSEV, E. V. NIKOLAEVA, E. I. SHISHKIN, R. G. BATCHKO, G. D. MILLER, M. M. FEJER and R. L. BYER, Ferroelectrics 236 (2000) 129.Google Scholar
  11. 11.
    M. E. LINES and A. M. GLASS, “Principles and Application of Ferroelectrics and Related Materials” (Clarendon Press, Oxford, 1977).Google Scholar
  12. 12.
    R. C. MILLER, J. Phys. Chem. Solids 17 (1960) 93.CrossRefGoogle Scholar
  13. 13.
    V. YA. SHUR, E. L. RUMYANTSEV, D. V. PELEGOV, V. L. KOZHEVNIKOV, E. V. NIKOLAEVA, E. I. SHISHKIN, A. P. CHERNYKH and R. K. IVANOV, Ferroelectrics 267 (2002) 347.CrossRefGoogle Scholar
  14. 14.
    M. VOLMER, “Kinetik der Phasenbildung” (Steinkopff, Dresden-Leipzig, 1939).Google Scholar
  15. 15.
    YA. B. ZELDOVICH, Zh. Eksp. Theor. Fiz. 12 (1942) 525 (in Russian).Google Scholar
  16. 16.
    J. W. P. Schmelzer (ed.) Nucleation Theory and Applications, (Wiley-VCH, Weinheim, 2005).Google Scholar
  17. 17.
    A. N. KOLMOGOROV, Izv. Acad. Nauk USSR., Ser. Math. 3 (1937) 355 (in Russian).Google Scholar
  18. 18.
    M. AVRAMI, J. Chem. Phys. 7 (1939) 1103.CrossRefGoogle Scholar
  19. 19.
    Y. ISHIBASHI and Y. TAKAGI, J. Phys. Soc. Jap. 31 (1971) 506.CrossRefGoogle Scholar
  20. 20.
    V. M. FRIDKIN, “Ferroelectrics Semiconductors” (Consult. Bureau, New York and London, 1980).Google Scholar
  21. 21.
    P. V. LAMBECK and G. H. JONKER, J. Phys. Chem. Solids 47 (1986) 453.CrossRefGoogle Scholar
  22. 22.
    A. K. TAGANTSEV, I. STOLICHNOV, E. L. COLLA and N. SETTER, J. Appl. Phys. 90 (2001) 1387.CrossRefGoogle Scholar
  23. 23.
    V. YA. SHUR, in Nucleation Theory and Applications, edited by J. W. P. Schmelzer (Wiley-VCH, Weinheim, 2005) p. 178.Google Scholar
  24. 24.
    Y. FURUKAWA, K. KITAMURA, S. TAKEKAWA, K. NIWA and H. HATANO, Opt. Lett. 23 (1998) 1892.Google Scholar
  25. 25.
    V. GOPALAN, N. A. SANFORD, J. A. AUST, K. KITAMURA and Y. FURUKAWA, in Handbook of Advanced Electronic and Photonic Materials and Devices, edited by H. S. Nalwa (Academic Press, 2001) Ch. 2, p. 57.Google Scholar
  26. 26.
    K. KITAMURA, Y. FURUKAWA, K. NIWA, V. GOPALAN and T. MITCHELL, Appl. Phys. Lett. 73 (1998) 3073.CrossRefGoogle Scholar
  27. 27.
    K. NIWA, Y. FURUKAWA, S. TAKEKAWA and K. KITAMURA, J. Crystal Growth 208 (2000) 493.CrossRefGoogle Scholar
  28. 28.
    L. HUANG, D. HUI, D. J. BAMFORD, S. J. FIELD, I. MNUSHKINA, L. E. MYERS and J. V. KAYSER, Appl. Phys. B 72 (2001) 301.Google Scholar
  29. 29.
    V. GOPALAN, Q. JIA and T. MITCHELL, Appl. Phys. Lett. 75 (1999) 2482.CrossRefGoogle Scholar
  30. 30.
    M. MULLER, E. SOERGEL and K. BUSE, Opt. Lett. 28 (2003) 2515.Google Scholar
  31. 31.
    A. GRUVERMAN, O. KOLOSOV, J. HATANO, K. TAKAHASHI and H. TOKUMOTO, J. Vac. Sci. Technol. B 13 (1995) 1095.Google Scholar
  32. 32.
    V. YA. SHUR, E. L. RUMYANTSEV, E. V. NIKOLAEVA, E. I. SHISHKIN, R. G. BATCHKO, M. M. FEJER, R. L. BYER and I. MNUSHKINA, Ferroelectrics 269 (2002) 189.CrossRefGoogle Scholar
  33. 33.
    V. YA. SHUR, E. L. RUMYANTSEV, E. V. NIKOLAEVA, E. I. SHISHKIN, R. G. BATCHKO, M. M. FEJER and R. L. BYER, ibid. 257 (2001) 191.Google Scholar
  34. 34.
    M. E. DROUGARD and R. LANDAUER, J. Appl. Phys. 30 (1959) 1663.CrossRefGoogle Scholar
  35. 35.
    V. YA. SHUR, A. L. GRUVERMAN, V. V. LETUCHEV, E. L. RUMYANTSEV and A. L. SUBBOTIN, Ferroelectrics 98 (1989) 29.Google Scholar
  36. 36.
    V. YA. SHUR, E. L. RUMYANTSEV, V. P. KUMINOV, A. L. SUBBOTIN and E.V. NIKOLAEVA, Phys. Solid State 41 (1999) 112.CrossRefGoogle Scholar
  37. 37.
    G. ROSENMAN, A. SKLIAR and A. ARIE, Ferroelectrics Review 1 (1999) 263.Google Scholar
  38. 38.
    V. YA. SHUR, E. L. RUMYANTSEV, E. V. NIKOLAEVA, E. I. SHISHKIN, R. G. BATCHKO, G. D. MILLER, M. M. FEJER and R. L. BYER, SPIE Proceedings on Smart Structures and Materials 3992 (2000) 143.Google Scholar
  39. 39.
    V. SHUR, E. RUMYANTSEV, R. BATCHKO, G. MILLER, M. FEJER and R. BYER, Ferroelectrics 221 (1999) 157.Google Scholar
  40. 40.
    V. GOPALAN and T. MITCHELL, J. Appl. Phys. 85 (1999) 2304.CrossRefGoogle Scholar
  41. 41.
    A. P. CHERNYKH, V. YA. SHUR, E. V. NIKOLAEVA, E. I. SHISHKIN, A. G. SHUR, K. TERABE, S. KURIMURA, K. KITAMURA and K. GALLO, Material Science & Engineering B 120 (2005) 109.Google Scholar
  42. 42.
    V. YA. SHUR, E. V. NIKOLAEVA, E. I. SHISHKIN, A. P. CHERNYKH, K. TERABE, K. KITAMURA, H. ITO and K. NAKAMURA, Ferroelectrics 269 (2002) 195.CrossRefGoogle Scholar
  43. 43.
    V. YA. SHUR, E. V. NIKOLAEVA, E. I. SHISHKIN, V. L. KOZHEVNIKOV, A. P. CHERNYKH, K. TERABE and K. KITAMURA, Appl. Phys. Lett. 79 (2001) 3146.CrossRefGoogle Scholar
  44. 44.
    V. YA. SHUR, E. L. RUMYANTSEV, E. V. NIKOLAEVA, E. I. SHISHKIN, D. V. FURSOV, R. G. BATCHKO, L. A. EYRES, M. M. FEJER and R. L. BYER, ibid. 76 (2000) 143.CrossRefGoogle Scholar
  45. 45.
    R. G. BATCHKO, V. Y. SHUR, M. M. FEJER and R. L. BYER, ibid. 75 (1999) 1673.CrossRefGoogle Scholar
  46. 46.
    V. YA. SHUR, E. L. RUMYANTSEV, E. V. NIKOLAEVA, E. I. SHISHKIN, D. V. FURSOV, R. G. BATCHKO, L. A. EYRES, M. M. FEJER, R. L. BYER and J. SINDEL, Ferroelectrics 253 (2001) 105.Google Scholar
  47. 47.
    V. YA. SHUR, A. L. GRUVERMAN, N. YU. PONOMAREV, and N. A. TONKACHYOVA, ibid. 126 (1992) 371.Google Scholar
  48. 48.
    V. YA. SHUR, A. L. GRUVERMAN, N. YU. PONOMAREV, E. L. RUMYANTSEV and N. A. TONKACHYOVA, Integrated Ferroelectrics 2 (1992) 51.Google Scholar
  49. 49.
    V. YA. SHUR, E. V. NIKOLAEVA and E. I. SHISHKIN, Physics of Low-Dimensional Structures 3/4 (2003) 139.Google Scholar
  50. 50.
    R. C. MILLER and A. SAVAGE, Phys. Rev. 115 (1959) 1176.CrossRefGoogle Scholar
  51. 51.
    J. HATANO, F. SUDA and H. FUTAMA, J. Phys. Soc. Jap. 45 (1978) 244.CrossRefGoogle Scholar
  52. 52.
    V. YA. SHUR, V. V. LETUCHEV and E. L. RUMYANTSEV, Sov. Phys. Solid State 26 (1984) 1521.Google Scholar
  53. 53.
    V. YA. SHUR, V. V. LETUCHEV, E. L. RUMYANTSEV and I. V. OVECHKINA, ibid. 27 (1985) 959.Google Scholar
  54. 54.
    R. BATCHKO, G. MILLER, R. BYER, V. SHUR and M. FEJER, United States Patent No. 6, 542,285 B1, April 1, 2003.Google Scholar
  55. 55.
    R. G. BATCHKO, M. M. FEJER, R. L. BYER, D. WOLL, R. WALLENSTEIN, V. YA. SHUR and L. ERMAN, Optics Letters 24/18 (1999) 1293.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Ferroelectric Laboratory IPAMUral State UniversityEkaterinburgRussia

Personalised recommendations