Journal of Materials Science

, Volume 41, Issue 1, pp 97–106

Magnetoelectric coupling, efficiency, and voltage gain effect in piezoelectric-piezomagnetic laminate composites

  • Shuxiang Dong
  • Jie-Fang Li
  • D. Viehland
Article

Abstract

The magnetoelectric (ME) effect of piezoelectric-magnetostrictive laminate composites, which is a product tensor, has been studied. Based on piezoelectric and piezomagnetic constituent equations, the longitudinal-mode vibration and equivalent circuits have been derived. The effective magnetoelectric coupling coefficient, voltage-gain, and output efficiency have been determined. Our results show: (i) that there is an extreme high voltage gain effect of >260 under resonance drive: the induced ME voltage is much higher than the input voltage to the coils for magnetic excitation; (ii) that there is an optimum ratio of the piezoelectric to piezomagnetic layer thicknesses, which results in maximum effective magnetoelectric coupling; and (iii) that the maximum output efficiency of magnetoelectric laminate at resonance drive is ∼98%, if eddy currents are neglected. This high ME voltage gain effect offers potential for power transformer applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. LANDAU and E. LIFTSHITZ, “Electrodynamics of Continuous Media” (Pergamon Press, Oxford, 1960) P.119.Google Scholar
  2. 2.
    DI MATTEO and S. JANSEN, AGM, Phys. Rev. B 66 (2002) 100402.CrossRefGoogle Scholar
  3. 3.
    I. E. DZYALOSHINSKII, Sovit Phys.-JETP 37 (1959) 81 [Sov. Phys JETP 10 (1960) 628].Google Scholar
  4. 4.
    L. WIEGELMANN, A. A. STEPANOV, I. M. VITEBSKY, A. G. M. JANSEN and P. WYDER, Phys. Rev. B 49 (1994) 10039.CrossRefGoogle Scholar
  5. 5.
    J. WANG, J. B. NEATON, H. ZHENG, V. NAGARAJAN, S. B. OGALE, B. LIU, D. VIEHLAND, V. VAITHYANATHAN, D. G. SCHLOM, U. V. WAGHMARE, N. A. SPALDIN, K. M. RABE, M. WUTTIG and R. RAMESH, Sci. 299 (2003) 1719.CrossRefGoogle Scholar
  6. 6.
    J. RYU, A. VAZQUEZ-ARAZO, K. UCHINO and H. KIM, J. Electro. 7 (2001) 17.CrossRefGoogle Scholar
  7. 7.
    T. WU and J. HUANG, International J. of Solids and Strus. 37 (2000) 2981.CrossRefGoogle Scholar
  8. 8.
    C. NAN, M. LI and J. HUANG, Phys. Review B 63 (2001) 144415. C. NAN, Phys. Rev. B. 50 (1994) 6082.Google Scholar
  9. 9.
    C. NAN, N. CAI, Z. SHI, J. ZHAI, G. LIU and Y. LIN, ibid. 71 (2005) 014102.CrossRefGoogle Scholar
  10. 10.
    M. BICHURIN, D. A. FILIPPOV and V. M. PETROV, ibid. 68 (2003) 132408.CrossRefGoogle Scholar
  11. 11.
    S. X. DONG, J. CHENG, J.F. LI and D. VIEHLAND, Appl. Phys. Lett. 83 (2003) 4812.CrossRefGoogle Scholar
  12. 12.
    H. YU, M. ZENG Y. WANG, et al., ibid. 86 (2005) 032508.CrossRefGoogle Scholar
  13. 13.
    M. ZENG, J.G. WAN, Y. WANG, et al. J. Appl. Phys. 95 (2004) 8069.CrossRefGoogle Scholar
  14. 14.
    D. A. FILIPPOV, M. BICHURIN, V. PETROV, et al., Phys. Solid State 46 (2004) 1674.CrossRefGoogle Scholar
  15. 15.
    S. X. DONG, J. F. LI and D. VIEHLAND, Appl. Phys. Lett. 85 (2004) 5305.CrossRefGoogle Scholar
  16. 16.
    Idem., ibid., 85 (2004) 3534.CrossRefGoogle Scholar
  17. 17.
    Idem., ibid. 84 (2004) 4188.CrossRefGoogle Scholar
  18. 18.
    M. AVELLANEDA and G. HARSHE, J. Inte. Mate. Systems and Struc. 5 501 (1994).Google Scholar
  19. 19.
    J. RYU, A. VAZQUEZ-ARAZO, K. UCHINO and H. KIM, Jpn. J. Appl. Phys. 40 (2001) 4948.CrossRefGoogle Scholar
  20. 20.
    G. SRINIVASAN, E. RASMUSSEN, B. LEVIN and R. HAYES, Phys. Rev. B 65 (2002) 134402.CrossRefGoogle Scholar
  21. 21.
    G. SRINIVASAN, E. RASMUSSEN, J. GALLEGOS, R. SRINIVASAN, Y. BOKHAN and V. LALETIN, ibid. B 64 (2001) 214408.CrossRefGoogle Scholar
  22. 22.
    J. RYU, S. PRIYA, A. VAZQUEZ-ARAZO, K. UCHINO and H. KIM, J. Am. Ceram. Soc. 84 (2001) 2905.Google Scholar
  23. 23.
    G. SRINIVASAN, V. LALETIN, R. HAYES, N. PUDDUBNAYA, E. RASMUSSEN and D. FEKEL, Solid State Commu. 124 (2002) 373.CrossRefGoogle Scholar
  24. 24.
    M. BICHURIN, V. PETROV and G. SRINIVASAN, J. Appl. Phys. 92 (2002) 7681.CrossRefGoogle Scholar
  25. 25.
    K. MORI and M. WUTTIG, Appl. Phys. Lett. 81 (2002) 100.CrossRefGoogle Scholar
  26. 26.
    S. X. DONG, J.F. LI and D. VIEHLAND, IEEE Transactions on Ultrasonics, Ferroelectrics, and Freque. Control 50(1) (2003) 253.Google Scholar
  27. 27.
    Idem., J. Appl. Phys. 96 (2004) 3382.CrossRefGoogle Scholar
  28. 28.
    S. X. DONG, J. ZHAI, Z. XING, J.F. LI and D. VIEHLAND, Appl. Phys. Lett. 86 (2005) 102901.CrossRefGoogle Scholar
  29. 29.
    S. X. DONG, J.F. LI and D. VIEHLAND, ibid. 85 (2004) 2307.CrossRefGoogle Scholar
  30. 30.
    Idem., IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 50 (2003) 1236.CrossRefGoogle Scholar
  31. 31.
    Idem., ibid. 51 (2004) 794.Google Scholar
  32. 32.
    Idem., J. Appl. Phys. 97 (2005) 103902.CrossRefGoogle Scholar
  33. 33.
    W. MASON, “Physical Acoustics, Principle and Methods” (New York Academic Press 1964) p. 263.Google Scholar
  34. 34.
    G. ENGDAHL, “Magnetostrictive Materials Handbook” (Academic Press, ISBN: 0-12-238640-X, 2000).Google Scholar
  35. 35.
    W. G. CADY, “Piezoelectricity, An Introduction to theory and applications of Electromechanical Phenomena in Crystal” (Dover Publications, New York, 1964).Google Scholar
  36. 36.
    A. VAZQUEZ-CARAZO, in Fifth International Conference on Intelligent Materials (Smart System and Nanotechnology, University Park, PA, USA 2003).Google Scholar
  37. 37.
    C. ROSEN, “Elect. Components Symposium,” 7th (Washington, D.C., 1956) p.205.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Shuxiang Dong
    • 1
  • Jie-Fang Li
    • 1
  • D. Viehland
    • 1
  1. 1.Department of Materials Science & EngineeringVirginia TechBlacksburg

Personalised recommendations