Advertisement

Journal of Materials Science

, Volume 41, Issue 1, pp 31–52 | Cite as

Recent progress in relaxor ferroelectrics with perovskite structure

  • A. A. Bokov
  • Z.-G. Ye
Article

Abstract

Relaxor ferroelectrics were discovered almost 50 years ago among the complex oxides with perovskite structure. In recent years this field of research has experienced a revival of interest. In this paper we review the progress achieved. We consider the crystal structure including quenched compositional disorder and polar nanoregions (PNR), the phase transitions including compositional order-disorder transition, transition to nonergodic (probably spherical cluster glass) state and to ferroelectric phase. We discuss the lattice dynamics and the peculiar (especially dielectric) relaxation in relaxors. Modern theoretical models for the mechanisms of PNR formation and freezing into nonergodic glassy state are also presented.

Keywords

Perovskite Relaxor Ferroelectric Transverse Optic Transverse Acoustic Dipole Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. SMOLENSKII, V. A. ISUPOV, A. I. AGRANOVSKAYA and S. N. POPOV, Sov. Phys. Solid State 2 (1961) 2584.Google Scholar
  2. 2.
    F. CHU, N. SETTER and A. K. TAGANTSEV, J. Appl. Phys. 74 (1993) 5129.Google Scholar
  3. 3.
    X. DAI, Z. XU and D. VIEHLAND, Phil. Mag. B 70 (1994) 33.Google Scholar
  4. 4.
    A. KRUMINS, T. SHIOSAKI and S. KOIZUMI, Jpn. J. Appl. Phys. Pt. 1 33 (1994) 4940.Google Scholar
  5. 5.
    PH. SCIAU, G. CALVARIN and J. RAVEZ, Sol. Stat. Commun. 113 (2000) 77.Google Scholar
  6. 6.
    A. SIMON, J. RAVEZ and M. MAGLIONE, J. Phys.: Condens. Matter 16 (2004) 963.Google Scholar
  7. 7.
    N. YASUDA, H. OHWA and S. ASANO, Jpn. J. Appl. Phys. Pt. 1 35 (1996) 5099.Google Scholar
  8. 8.
    G. A. SMOLENSKII, J. Phys. Soc. Jpn. 28 (Supl.) (1970) 26.Google Scholar
  9. 9.
    A. A. BOKOV, Ferroelectrics 131 (1992) 49.Google Scholar
  10. 10.
    L. E. CROSS, ibid. 76 (1987) 241; 151 (1994) 305.Google Scholar
  11. 11.
    Z.-G. YE, Key Eng. Mater. 155–156 (1998) 81.CrossRefGoogle Scholar
  12. 12.
    C. G. F. STENGER and A. J. BURGGRAAF, Phys. Stat. Sol. (a) 60 (1980) 653.Google Scholar
  13. 13.
    C. BOULESTEIX, F. VARNIER, A. LLEBARIA and E. HUSSON, J. Solid State Chem. 108 (1994) 141.Google Scholar
  14. 14.
    M. YOSHIDA, S. MORI, N. YAMAMOTO, Y. UESU and J. M. KIAT, Ferroelectrics 217 (1998) 327.Google Scholar
  15. 15.
    A. TKACHUK and H. CHEN, ibid. 253 (2001) 1.Google Scholar
  16. 16.
    P. K. DAVIES and M. A. AKBAS, J. Phys. Chem. Solids 61 (2000) 159.Google Scholar
  17. 17.
    H. Z. JIN, J. ZHU, S. MIAO, X. W. ZHANG and Z. Y. CHENG, J. Appl. Phys. 89 (2001) 5048.Google Scholar
  18. 18.
    A. A. BOKOV, I. P. RAEVSKII and V. G. SMOTRAKOV, Sov. Phys. Sol. Stat. 26 (1984) 1708.Google Scholar
  19. 19.
    A. A. BOKOV, M. A. LESHCHENKO, M. A. MALITSKAYA and I. P. RAEVSKI, J. Phys.: Condens. Matter 11 (1999) 4899.Google Scholar
  20. 20.
    A. A. BOKOV, Ferroelectrics 183 (1996) 65.Google Scholar
  21. 21.
    P. K. DAVIES, Curr. Opin. Sol. Stat. Mater. Sci. 4 (1999) 467.Google Scholar
  22. 22.
    V. A. ISUPOV, Ferroelectrics 289 (2003) 131.Google Scholar
  23. 23.
    R. COMES, M. LAMBERT and A. GUINIER Acta Crystallogr. B 26 (1970) 244.Google Scholar
  24. 24.
    E. A. STERN Phys. Rev. Lett. 93 (2004) 037601.Google Scholar
  25. 25.
    R. E. COHEN, Nature 358 (1992) 136.Google Scholar
  26. 26.
    P. BONNEAU, P. GARNIER, E. HUSSON and A. MORELL, Mat. Res. Bull. 24 (1989) 201.Google Scholar
  27. 27.
    P. BONNEAU, P. GARNIER, G. CALVARIN, E. HUSSON, J. R. GAVARRI and A. MORELL, J. Solid State Chem. 91 (1991) 350.Google Scholar
  28. 28.
    S. VAKHRUSHEV, S. ZHUKOV, G. FETISOV and V. CHERNYSHOV, J. Phys.: Condens. Matter 6 (1994) 4021.Google Scholar
  29. 29.
    K. FUJISHIRO, T. IWASE, Y. UESU, Y. YAMADA, B. DKHIL, J.-M. KIAT, S. MORI and N. YAMAMOTO, J. Phys. Soc. Jpn. 69 (2000) 2331.Google Scholar
  30. 30.
    B. DKHIL, J. M. KIAT, G. CALVARIN, G. BALDINOZZI, S. B. VAKHRUSHEV and E. SUARD, Phys. Rev. B 65 (2001) 024104.Google Scholar
  31. 31.
    S. G. ZHUKOV, V. V. CHERNYSHEV and S. B. VAKHRUSHEV, Ferroelectrics 235 (1999) 143.Google Scholar
  32. 32.
    R. BLINC, V. LAGUTA and B. ZALAR, Phys. Rev. Lett. 91 (2003) 247601.Google Scholar
  33. 33.
    T. EGAMI, Ferroelectrics 267 (2002) 101.Google Scholar
  34. 34.
    S. AOYAGI, Y. KUROIWA, A. SAWADA, H. TANAKA, I. HARADA, E. NISHIBORI, M. TAKATA and M. SAKATA, J. Phys. Soc. Jpn. 71 (2002) 2353.Google Scholar
  35. 35.
    Y. UESU, Y. YAMADA, K. FUJISHIRO, H. TAZAWA, S. ENOKIDO, J.-M. KIAT and B. DKHIL, Ferroelectrics 217 (1998) 319.Google Scholar
  36. 36.
    V. A. SHUVAEVA, I. PIROG, Y. AZUMA, K. YAGI, K. SAKAUE, H. TERAUCHI, I. P. RAEVSKII, K. ZHUCHKOV and M. YU. ANTIPIN, J. Phys.: Condens. Matter 15 (2003) 2413.Google Scholar
  37. 37.
    G. BURNS and F. H. DACOL, Sol. Stat. Commun. 48 (1983) 853.Google Scholar
  38. 38.
    S. B. VAKHRUSHEV, B. E. KVYATKOVSKY, A. A. NABEREZNOV, N. M. OKUNEVA and B. P. TOPERVERG, Ferroelectrics 90 (1989) 173.Google Scholar
  39. 39.
    A. NABEREZNOV, S. VAKHRUSHEV, B. DORNER, D. STRAUCH and H. MOUDDEN, Eur. Phys. J. 11 (1999) 13.Google Scholar
  40. 40.
    K. HIROTA, Z.-G. YE, S. WAKIMOTO, P. M. GEHRING and G. SHIRANE, Phys. Rev. B 65 (2002) 104105.Google Scholar
  41. 41.
    S. VAKHRUSHEV, A. NABEREZNOV, S. K. SINHA, Y. P. FENG and T. EGAMI, J. Phys. Chem. Solids 57 (1996) 1517.Google Scholar
  42. 42.
    G. XU, G. SHIRANE, J. R. D. COPLEY and P. M. GEHRING, Phys. Rev. B 69 (2004) 064112.Google Scholar
  43. 43.
    D. LA-ORAUTTAPONG, J. TOULOUSE, J. L. ROBERTSON and Z.-G. YE, ibid. 64 (2001) 212101.Google Scholar
  44. 44.
    C. STOCK, R. J. BIRGENEAU, S. WAKIMOTO, J. S. GARDNER, W. CHEN, Z.-G. YE and G. SHIRANE, ibid. 69 (2004) 094104.Google Scholar
  45. 45.
    S. B. VAKHRUSHEV, A. A. NABEREZHNOV, N. M. OKUNEVA and B. N. SAVENKO, Phys. Sol. Stat. 37 (1995) 1993.Google Scholar
  46. 46.
    N. TAKESUE, Y. FUJII and H. YOU, Phys. Rev. B 64 (2001) 184112.Google Scholar
  47. 47.
    Y. MORIYA, H. KAWAJI, T. TOJO and T. ATAKE, Phys. Rev. Lett. 90 (2003) 205901.Google Scholar
  48. 48.
    F. M. JIANG and KOJIMA, Phys. Rev. B 62 (2000) 8572; Appl. Phys. Lett. 77 (2000) 1271.Google Scholar
  49. 49.
    V. V. LEMANOV, N. K. YUSHIN, E. P. SMIRNOVA, A. V. SOTNIKOV, E. A. TARAKANOV and A. YU. MAKSIMOV, Ferroelectrics 134 (1992) 139.Google Scholar
  50. 50.
    K. UCHINO, ibid. 151 (1994) 321.Google Scholar
  51. 51.
    J. ZHAO, A. E. GLAZOUNOV, Q. M. ZHANG and B. TOBY, Appl. Phys. Lett. 72 (1998) 1048.Google Scholar
  52. 52.
    YU. M. POPLAVKO, V. P. BOVTUN, N. N. KRAINIK and G. A. SMOLENSKII, Sov. Phys. Sol. Stat. 27 (1985) 1903.Google Scholar
  53. 53.
    E. DUL'KIN, I. P. RAEVSKII and S. M. EMEL'YANOV, Phys. Sol. Stat. 45 (2003) 158.Google Scholar
  54. 54.
    P. M. GEHRING, S. WAKIMOTO, Z.-G. YE and G. SHIRANE, Phys. Rev. Lett. 87 (2001) 277601.Google Scholar
  55. 55.
    S. WAKIMOTO, C. STOCK, R. J. BIRGENEAU, Z.-G. YE, W. CHEN, W. J. L. BUYERS, P. M. GEHRING and G. SHIRANE, Phys. Rev. B 65 (2002) 172105.Google Scholar
  56. 56.
    P. M. GEHRING, S.-E. PARK and G. SHIRANE, ibid. 63 (2001) 224109.Google Scholar
  57. 57.
    Idem., Phys. Rev. Lett. 84 (2000) 5216.Google Scholar
  58. 58.
    J. HLINKA, S. KAMBA, J. PETZELT, J. KULDA, C. A. RANDALL and S. J. ZHANG, ibid. 91 (2003) 107602.Google Scholar
  59. 59.
    S. B. VAKHRUSHEV and S. M. SHAPIRO, Phys. Rev. B 66 (2002) 214101.Google Scholar
  60. 60.
    S. WAKIMOTO, C. STOCK, Z.-G. YE, W. CHEN, P. M. GEHRING and G. SHIRANE, Phys. Rev. B 66 (2002) 224102.Google Scholar
  61. 61.
    V. BOVTUN, S. KAMBA, A. PASHKIN, M. SAVINOV, P. SAMOUKHINA, J. PETZELT, I. BYKOV and M. D. GLINCHUK, Ferroelectrics 298 (2004) 23.Google Scholar
  62. 62.
    S. KAMBA, V. BOVTUN, J. PETZELT, I. RYCHETSKY, R. MIZARAS, A. BRILINGAS, J. BANYS, J. GRIGAS and M. KOSEC, J. Phys.: Condens. Matter 12 (2000) 497.Google Scholar
  63. 63.
    I. G. SINY, S. G. LUSHNIKOV and R. S. KATIYAR, Ferroelectrics 231 (1999) 115.Google Scholar
  64. 64.
    I. G. SINY, S. G. LUSHNIKOV, R. S. KATIYAR and V. H. SCHMIDT, ibid. 226 (1999) 191.Google Scholar
  65. 65.
    O. SVITELSKIY, J. TOULOUSE, G. YONG and Z.-G. YE, Phys. Rev. B 68 (2003) 104107.Google Scholar
  66. 66.
    S. A. PROSANDEEV, E. COCKAYNE, B. P. BURTON, S. KAMBA, J. PETZELT, YU. YUZYUK, R. S. KATIYAR and S. B. VAKHRUSHEV, ibid. 70 (2004) 134110.Google Scholar
  67. 67.
    M. D. GLINCHUK and R. FARHI, J. Phys.: Condens. Matter 8 (1996) 6985.Google Scholar
  68. 68.
    A. A. BOKOV, JEPT 84 (1997) 994.Google Scholar
  69. 69.
    P. N. TIMONIN, Ferroelectrics 199 (1997) 69.Google Scholar
  70. 70.
    A. A. BOKOV, Phys. Solid State 36 (1994) 19; Ferroelectrics 190 (1997) 197.Google Scholar
  71. 71.
    V. WESTPHAL, W. KLEEMANN and M. D. GLINCHUK, Phys. Rev. Lett. 68 (1992) 847.Google Scholar
  72. 72.
    V. M. ISHCHUK, Ferroelectrics 255 (2001) 73.Google Scholar
  73. 73.
    N. DE MATHAN, E. HUSSON, G. CALVARIN, J. R. GAVARRI, A. W. HEWAT and A. MORELL, J. Phys. Condens. Matter 3 (1991) 8159.Google Scholar
  74. 74.
    W. KLEEMANN, Int. J. Mod. Phys. B 7 (1993) 2469.Google Scholar
  75. 75.
    Y. IMRY and S.-K. MA, Phys. Rev. Lett. 35 (1975) 1399.Google Scholar
  76. 76.
    M. D. GLINCHUK, British Ceramic Trans. 103 (2004) 76.Google Scholar
  77. 77.
    A. A. BOKOV and Z.-G. YE, Phys. Rev. B 66 (2002) 064103.Google Scholar
  78. 78.
    Y. BING, A. A. BOKOV, Z.-G. YE, B. NOHEDA and G. SHIRANE, J. Phys. Condens. Matter 17 (2005) 2493.Google Scholar
  79. 79.
    A. K. JONSCHER, Nature 267 (1977) 673; Universal relaxation law (Chelsea Dielectrics Press, London, 1996).Google Scholar
  80. 80.
    A. A. BOKOV and Z.-G. YE, Phys. Rev. B 65 (2002) 144112.Google Scholar
  81. 81.
    Idem., J. Phys.: Condens. Matter. 12 (2000) L541.Google Scholar
  82. 82.
    Idem., Appl. Phys. Lett. 77 (2000) 1888.Google Scholar
  83. 83.
    Y. H. BING, A. A. BOKOV and Z.-G. YE, unpublished.Google Scholar
  84. 84.
    A. A. BOKOV, M. MAGLIONE, A. SIMON and Z.-G. YE, Ferroelectrics (in press).Google Scholar
  85. 85.
    A. A. BOKOV and Z.-G. YE, Sol. Stat. Commun. 116 (2000) 105.Google Scholar
  86. 86.
    A. A. BOKOV, Y.-H. BING, W. CHEN, Z.-G. YE, S. A. BOGATINA, I. P. RAEVSKI, S. I. RAEVSKAYA and E. V. SAHKAR, Phys. Rev. B 68 (2003) 052102.Google Scholar
  87. 87.
    D. VIEHLAND, S. JANG, L. E. CROSS and M. WITTIG, Phil. Mag. B 64 (1991) 335.Google Scholar
  88. 88.
    V. BOVTUN, J. PETZELT, V. POROKHONSKYY, S. KAMBA and Y. YAKIMENKO, J. Europ. Ceram. Soc. 21 (2001) 1307.Google Scholar
  89. 89.
    I. RYCHETSKY, S. KAMBA, V. POROKHONSKYY, A. PASHKIN, M. SAVINOV, V. BOVTUN, J. PETZELT, M. KOSECand M. DRESSEL, J. Phys. Condens. Matter 15 (2003) 6017.Google Scholar
  90. 90.
    T. TSURUMI, K. SOEJIMA, T. KAMIYA and M. DAIMON, Jpn. J. Appl. Phys., Part 1 33 (1994) 1959.Google Scholar
  91. 91.
    H. M. CHRISTEN, R. SOMMER, N. K. YUSHIN and J. J. VAN DER KLINK, J. Phys. Condens. Matter 6 (1994) 2631.Google Scholar
  92. 92.
    D. VIEHLAND, S. J. JANG, L. E. CROSS and M. WUTTIG, J. Appl. Phys. 68 (1990) 2916.Google Scholar
  93. 93.
    A. K. TAGANTSEV, Phys. Rev. Lett. 72 (1994) 1100.Google Scholar
  94. 94.
    A. E. GLAZOUNOV and A. K. TAGANTSEV, Appl. Phys. Lett. 73 (1998) 856.Google Scholar
  95. 95.
    A. LEVSTIK, Z. KUTNJAK, C. FILIPIC and R. PIRC, Phys. Rev. B 57 (1998) 11204.Google Scholar
  96. 96.
    Z. KUTNJAK, C. FILIPIC, R. PIRC, A. LEVSTIK, R. FARHI and M. MARSSI, ibid. 59 (1999) 294.Google Scholar
  97. 97.
    V. V. KIRILLOV and V. A. ISUPOV, Ferroelectrics 5 (1973) 3.Google Scholar
  98. 98.
    B. E. VUGMEISTER and H. RABITZ, Phys. Rev. B 57 (1998) 7581.Google Scholar
  99. 99.
    R. BLINC, V. BOBNAR and R. PIRC, ibid. 64 (2001) 132103.Google Scholar
  100. 100.
    A. E. GLAZOUNOV and A. K. TAGANTSEV, Ferroelectrics 221 (1999) 57.Google Scholar
  101. 101.
    A. K. TAGANTSEV and A. E. GLAZOUNOV, Phys. Rev. B 57 (1998) 18.Google Scholar
  102. 102.
    Z.-G. YE and A. A. BOKOV, Ferroelectrics 302 (2004) 227.Google Scholar
  103. 103.
    D. VIEHLAND, S. J. JANG, L. E. CROSS and M. WUTTIG, Phys. Rev. B 46 (1992) 8003.Google Scholar
  104. 104.
    C. S. TU, V. H. SCHMIDT and I. G. SINY J. Appl. Phys. 78 (1995) 5665.Google Scholar
  105. 105.
    A. VERBAERE, Y. PIFFARD, Z.-G. YE and E. HUSSON, Mat. Res. Bull. 27 (1992) 1227.Google Scholar
  106. 106.
    A. R. LEBEDINSKAYA and M. F. KUPRIYANOV, Phase Trans. 75 (2002) 289.Google Scholar
  107. 107.
    W. KLEEMANN and R. LINDNER, Ferroelectrics 199 (1997) 1.Google Scholar
  108. 108.
    Z.-G. YE and H. SCHMID, ibid. 145 (1993) 83.Google Scholar
  109. 109.
    N. W. THOMAS, S. A. IVANOV, S. ANANTA, R. TELLGREN and H. RUNDLOF, J. Eur. Ceram. Soc. 19 (1999) 2667.Google Scholar
  110. 110.
    A. TKACHUK and H. CHEN, Fundamental Physics of Ferroelectrics. (AIP Conference Proceedings No. 677, 2003) p. 55–64.Google Scholar
  111. 111.
    R. V. CHAMBERLIN, Europhys. Lett. 33 (1996) 545.Google Scholar
  112. 112.
    E. V. COLLA, E. YU. KOROLEVA, N. M. OKUNEVA and S. B. VAKHRUSHEV, Phys. Rev. Lett. 74 (1995) 1681.Google Scholar
  113. 113.
    S. B. VAKHRUSHEV, J.-M. KIAT and B. DKHIL, Sol. Stat. Commun. 103 (1997) 477.Google Scholar
  114. 114.
    E. V. COLLA, L. K. CHAO, M. B. WEISSMAN and D. VIEHLAND, Phys. Rev. Lett. 85 (2000) 3033.Google Scholar
  115. 115.
    R. G. PALMER, Adv. Phys. 31 (1982) 669.Google Scholar
  116. 116.
    R. P. FEYNMAN, Statistical mechanics (Benjamin, Reading, 1972).Google Scholar
  117. 117.
    G. CALVARIN, E. HUSSON and Z.-G. YE, Ferroelectrics 165 (1995) 349.Google Scholar
  118. 118.
    F. CHU, I. M. REANEY and N. SETTER, J. Appl. Phys. 77 (1995) 1671.Google Scholar
  119. 119.
    Z.-G. YE, Y. BING, J. GAO, A. A. BOKOV, P. STEPHENS, B. NOHEDA and G. SHIRANE, Phys. Rev. B 67 (2003) 104104.Google Scholar
  120. 120.
    Z.-G. YE and M. DONG, J. Appl. Phys. 87 (2000) 2312.Google Scholar
  121. 121.
    C.-S. TU, C.-L. TSAI, V. H. SCHMIDT, H. LUO and Z. YIN, ibid. 89 (2001) 7908.Google Scholar
  122. 122.
    A. A. BOKOV and Z.-G. YE, ibid. 95 (2004) 6347.Google Scholar
  123. 123.
    F. CHU, I. M. REANEY and N. SETTER, J. Amer. Ceram. Soc. 78 (1995) 1947.Google Scholar
  124. 124.
    M. ABPLANALP, D. BAROSOVA, P. BRIDENBAUGH, J. ERHART, J. FOUSEK, P. GUNTER, J. NOSEK and M. SULC, J. Appl. Phys. 91 (2002) 3797.Google Scholar
  125. 125.
    V. V. SHVARTSMAN and A. L. KHOLKIN, Phys. Rev. B 69 (2004) 014102.Google Scholar
  126. 126.
    F. BAI, J. LI and D. VIEHLAND, Appl. Phys. Lett. 85 (2004) 2313.Google Scholar
  127. 127.
    A. A. BOKOV and Z.-G. YE, Phys. Rev. B 66 (2002) 094112.Google Scholar
  128. 128.
    C. PERRIN, N. MENGUY, O. BIDAULT, C. Y. ZAHRA, A.-M. ZAHRA, C. CARANONI, B. HILCZER and A. STEPANOV, J. Phys. Condens. Matter. 13 (2001) 10231.Google Scholar
  129. 129.
    L. S. KAMZINA and N. N. KRAINIK, Phys. Solid State 42 (2000) 1712.Google Scholar
  130. 130.
    A. A. BOKOV and S. M. EMELIYANOV, Phys Stat. Sol. (b) 164 (1991) K109.Google Scholar
  131. 131.
    P. BAO, F. YAN, W. LI, Y. R. DAI, H. M. SHEN, J. S. ZHU, Y. N. WANG, H. L. W. CHAN and C.-L. CHOY, Appl. Phys. Lett. 81 (2002) 2059.Google Scholar
  132. 132.
    A. A. BOKOV, H. LUO and Z.-G. YE, Mater. Sci. Eng. B 120 (2005) 206.Google Scholar
  133. 133.
    A. LEBON, H. DAMMAK, G. GALVARIN and I. OULD AHMEDOU, J. Phys. Condens. Matter 14 (2002) 7035.Google Scholar
  134. 134.
    S. KAMBA, E. BUIXADERAS, J. PETZELT, J. FOUSEK, J. NOSEK and P. BRIDENBAUGH, J. Appl. Phys 93 (2003) 933.Google Scholar
  135. 135.
    G. XU, Z. ZHONG, Y. BING, Z.-G. YE, C. STOCK and G. SHIRANE, Phys. Rev. B 67 (2003) 104102.Google Scholar
  136. 136.
    Idem., ibid. 70 (2004) 064107.Google Scholar
  137. 137.
    K. OHWADA, K. HIROTA, P. REHRIG, FUJII and G. SHIRANE, ibid. 67 (2003) 094111.Google Scholar
  138. 138.
    G. XU, H. HIRAKA, G. SHIRANE and K. OHWADA, Appl. Phys. Lett. 84 (2004) 3975.Google Scholar
  139. 139.
    P. M. GEHRING, W. CHEN, Z. G. YE and G. SHIRANE, J. Phys.: Condens. Matter 16 (2004) 7113.Google Scholar
  140. 140.
    G. XU, D. VIEHLAND, J. F. LI, P. M. GEHRING and G. SHIRANE, Phys. Rev. B 68 (2003) 212410.Google Scholar
  141. 141.
    K. H. CONLON, H. LUO, D. VIEHLAND, J. F. LI, T. WHAN, J. H. FOX, C. STOCK and G. SHIRANE, Phys. Rev. B 70 (2004) 172204.Google Scholar
  142. 142.
    G. A. SAMARA, Ferroelectrics 274 (2002) 183.Google Scholar
  143. 143.
    Idem., J. Phys.: Condens. Matter 15 (2003) R367.Google Scholar
  144. 144.
    Y. YAMASHITA, Y. HOSONO, K. HARADA and N. YASUDA, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 49 (2002) 184.Google Scholar
  145. 145.
    P. W. REHRIG, W. S. HACKENBERGER, S.-E. PARK and T. R. SHROUT, in “Piezoelectric Materials in Devices,”. edited by N. Setter (EPFL, Lausanne, 2002) p. 433.Google Scholar
  146. 146.
    Z.-G. YE, Curr. Opin. Sol. Stat. Mater. Sci. 6 (2002) 35.Google Scholar
  147. 147.
    B. NOHEDA, ibid. 6 (2002) 27.Google Scholar
  148. 148.
    A. A. BOKOV and Z.-G. YE, Ceramic Transactions (Morphotropic Phase Boundary Perovskites, High Strain Piezoelectrics, and Dielectric Ceramics) 136 (2003) 37.Google Scholar
  149. 149.
    R. PIRC and R. BLINC, Phys. Rev. B 60 (1999) 13470.Google Scholar
  150. 150.
    R. BLINC, J. DOLINSEK, A. GREGOROVIC, B. ZALAR, C. FILIPIC, Z. KUTNJAK, A. LEVSTIK and R. PIRC, Phys. Rev. Lett. 83 (1999) 424.Google Scholar
  151. 151.
    W. KLEEMANN, J. DEC, R. BLINC, B. ZALAR and R. PANKRATH, Ferroelectrics 267 (2002) 157.Google Scholar
  152. 152.
    R. PIRC, R. BLINC and V. BOBNAR, Phys. Rev. B 63 (2001) 0542203.Google Scholar
  153. 153.
    B. E. VUGMEISTER and H. RABITZ, ibid. 61 (2000) 14448.Google Scholar
  154. 154.
    Idem., ibid. 65 (2001) 024111.Google Scholar
  155. 155.
    R. F. MAMIN, Phys. Sol. Stat. 43 (2001) 1314.Google Scholar
  156. 156.
    R. F. MAMIN and R. BLINC, ibid. 45 (2003) 942.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • A. A. Bokov
    • 1
  • Z.-G. Ye
    • 1
  1. 1.Department of ChemistrySimon Fraser UniversityBurnabyCanada

Personalised recommendations