Journal of Materials Science

, Volume 40, Issue 22, pp 5941–5948 | Cite as

Numerical simulation of entangled materials mechanical properties

  • Damien Durville
Mechanical Behavior of Cellular Solids


A general approach to simulate the mechanical behaviour of entangled materials submitted to large deformations is described in this paper. The main part of this approach is the automatic creation of contact elements, with appropriate constitutive laws, to take into account the interactions between fibres. The construction of these elements at each increment, is based on the determination of intermediate geometries in each region where two parts of beams are sufficiently close to be likely to enter into contact. Numerical tests simulating a 90% compression of nine randomly generated samples of entangled materials are given. They allow the identification of power laws to represent the evolutions of the compressive load and of the number of contacts.


Polymer Mechanical Property Mechanical Behaviour Main Part Large Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. W. McDevitt and T. A. Laursen, Intern. J. Numer. Meth. Engng. 48 (2000) 1525.Google Scholar
  2. 2.
    D. Durville, Modélisation du comportement mćanique des câbles métalliques, Revue Europénne des Éléments Finis 7(1–3) (1998) 9.Google Scholar
  3. 3.
    G. Zavarise and P. Wriggers, Intern. J. Numer. Meth. Engng. 49 (2000) 977.Google Scholar
  4. 4.
    M. Baudequin, G. Ryschenkow and S. Roux, The European Physical J. B 12 (1999) 157.Google Scholar
  5. 5.
    C. M. van Wyk, J. Textile Inst. 37 (1946) 285.Google Scholar
  6. 6.
    S. Toll and J.-A. E. Manson, J. Appl. Mech.-T. ASME 38 (1995) 223.Google Scholar
  7. 7.
    S. Toll, Polymer Eng. Sci. 38 (1998) 1337.Google Scholar
  8. 8.
    N. B. Beil and W. W. Roberts, Jr., Textile Res. J. 72(4) (2002) 341.Google Scholar
  9. 9.
    N. B. Beil and W. W. Roberts, Jr., Textile Res. J. 72(5) (2002) 375.Google Scholar
  10. 10.
    S. Heyden, Network modelling for the evaluation of mechanical properties of cellulose fibre fluff, Lund University, Sweden (2000).Google Scholar

Copyright information

© Springer Science + Business Media, Inc 2005

Authors and Affiliations

  1. 1.LMSSMat, Ecole Centrale Paris/CNRS UMR 8579Grande Voie des VignesChâtenay-Malabry CedexFrance

Personalised recommendations