Advertisement

Journal of Materials Science

, Volume 40, Issue 22, pp 5919–5924 | Cite as

An anisotropic damage model of foams on the basis of a micromechanical description

  • Stefan DiebelsEmail author
  • Tobias Ebinger
  • Holger Steeb
Mechanical Behavior of Cellular Solids

Abstract

The mechanical behavior of open-cell foams may be modeled either on a microscopic or a macroscopic scale. In the first case, the behavior of the individual cell walls is described by beam models, while in the second case a continuum mechanical approach is applied. Both approaches have different advantages: On the one hand, the microscopic approach allows for a simple formulation of the constitutive equations but requires detailed knowledge of the heterogeneous microstructure, e.g. geometrical data of the beams and of the topology, and becomes numerically expensive for large structures. On the other hand, the macroscopic approach leads to efficient computations but requires more complicated constitutive equations, if e.g. anisotropy is taken into account.

In the present contribution the advantages of the microscopic and macroscopic descriptions are combined by a numerical so-called second order homogenization scheme. Therefore, a small but representative element of the microstructure consisting of a few beam elements is chosen and attached to the quadrature points of the macroscopic finite element model. The macroscopic model is formulated in the framework of a Cosserat continuum, which allows to take care of size effects. The macroscopic strain and curvature tensors are projected onto the microstructure leading to a deformation mode of the beam ensemble. The resulting forces and moments in the beams are homogenized by an appropriate averaging procedure defining the corresponding stresses and couple stresses on the macroscale. In this approach, anisotropy is included in a natural way choosing an anisotropic distribution of the beams in the testing volume element (TVE). In addition, damage is described on the microscopic level of the individual beams.

Keywords

Foam Couple Stress Quadrature Point Macroscopic Strain Representative Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. J. GIBSON and M. F. ASHBY, in “Cellular solids. Structure and properties” (Cambridge University Press, Cambridge, 1997).Google Scholar
  2. 2.
    P. R. ONCK, E. W. ANDREWS and L. J. GIBSON, Int. J. Mech. Sci. 43 (2001) 681.Google Scholar
  3. 3.
    S. DIEBELS and H. STEEB, Proc. R. Soc. Lond. A 458 (2002) 2869.Google Scholar
  4. 4.
    S. DIEBELS and H. STEEB, Comp. Mat. Sci. 28 (2003) 714.Google Scholar
  5. 5.
    C. TEKOGLU and P. R. ONCK, in Cellular Metals and Metal Forming Technology, edited by J. Banhart and N. Fleck (MIT publishing, Boston, 2003).Google Scholar
  6. 6.
    C. B. KAFADAR and C. ERINGEN, Int. J. Engng. Sci. 9 (1971) 271.Google Scholar
  7. 7.
    W. NOWACKI, in “Theory of Asymmetric Elasticity” (Pergamon Press, Oxford, 1986).Google Scholar
  8. 8.
    A. C. ERINGEN, in “Microcontinuum Field Theories, Vol. I: Foundations and Solids” (Springer-Verlag, Berlin, 1999).Google Scholar
  9. 9.
    DIN 53457: Testing plastics: determining the modulus of elasticity in tensile, pressure and flexural tests (1987).Google Scholar
  10. 10.
    M. G. D. GEERS, V. G. KOUZNETSOVA and W. A. M. BREKELMANS, J. Phys. IV 11 (2001) 145.Google Scholar
  11. 11.
    V. G. KOUZNETSOVA, M. G. D. GEERS and W. A. M. BREKELMANS, Int. J. Numer. Meth. Eng. 54 (2002) 1235.Google Scholar
  12. 12.
    W. EHLERS, E. RAMM, S. DIEBELS and G. A. D'ADDETTA, Int. J. Solids Structures 40 (2003) 6681.Google Scholar
  13. 13.
    S. WHITAKER, in “The method of volume averaging” (Kluwer, Dordrecht, 1998).Google Scholar
  14. 14.
    Z. HASHIN, ASME J. Appl. Mech. 50 (1983) 481.Google Scholar
  15. 15.
    C. HUET, Eng. Fracture Mech. 58 (1997) 459.Google Scholar
  16. 16.
    F. FEYEL, Comp. Meth. Appl. Mech. Eng. 192 (2003) 3233.Google Scholar
  17. 17.
    A. ASKAR and A. S. CAKMAK, Int. J. Engng. Sci. 6 (1968) 583.Google Scholar
  18. 18.
    Z. P. BAžANT and M. CHRISTENSEN, Int. J. Solids Structures 8 (1972) 327.Google Scholar
  19. 19.
    J. LEMAITRE, in “A Course on Damage Mechanics” (Springer-Verlag, Berlin, 1992).Google Scholar
  20. 20.
    J. P. BARDET and I. VARDOULAKIS, Int. J. Solids Structures 38 (2001) 353.Google Scholar
  21. 21.
    S. DIEBELS and W. EHLERS, in “Trends in Computational Structural Mechanics”, edited by W. A. Wall, K.-U. Bletzinger and K. Schweizerhof (CIMNE, Barcelona, 2001) p. 79.Google Scholar
  22. 22.
    S. NEMAT-NASSER and M. HORI, in “Micromechanics” (North-Holland, Amsterdam, 1993).Google Scholar
  23. 23.
    G. A. D'ADDETTA, E. RAMM, S. DIEBELS and W. EHLERS, Eng. Comp. 21 (2004) 360.Google Scholar
  24. 24.
    E. COSSERAT and F. COSSERAT, in “Thèorie des corps dèformables” (A. Hermann et Fils, Paris, 1909).Google Scholar
  25. 25.
    W. VOLK, in “Untersuchung des Lokalisierungsverhaltens mikropolarer poröser Medien” (Institut für Mechanik (Bauwesen), Lehrstuhl II, Universität Stuttgart, Bericht Nr. II-2, 1999).Google Scholar
  26. 26.
    T. EBINGER, H. STEEB and S. DIEBELS, Comp. Mat. Science 32 (2004) 337.Google Scholar
  27. 27.
    S. DIEBELS, T. EBINGER, H. STEEB, A. DüSTER and E. RANK, CD-Rom Proc. of the ECCOMAS Thematic Conference on Coupled Problems, Santorini Island, Greece edited by M. Papadrakakis, E. Oñate and B. Schrefler, p. 106.Google Scholar

Copyright information

© Springer Science + Business Media, Inc 2005

Authors and Affiliations

  1. 1.Universität des SaarlandesLehrstuhl für Technische MechanikSaarbrücken

Personalised recommendations