Journal of Materials Science

, Volume 41, Issue 4, pp 1221–1232 | Cite as

Thermo-elastic properties of dense YSZ and porous Ni-ZrO2 monolithic and isotropic materials

  • Shiva Gadag
  • Ganesh SubbarayanEmail author
  • William Barker


Attempts are made to correlate the structure and properties of dense and porous Yittria Stabilized Zirconia to establish optimal thermo-elastic properties for better performance at elevated temperatures. Temperature and compositional dependence of isotropic elastic bulk properties (Young's modulus, Poisson's ratio and Shear and Bulk moduli) are determined using the stiffness constants reported in the literature. Anisotropy of Yittria Stabilized Zirconia increases with composition of Yittria dosage in Zirconia. Optimal composition of 12 mole% Yittria stabilized Zirconia is slightly better than 8 mole% Yittria Stabilized Zirconia based on the improved thermo-elastic properties for better performance at higher temperature (RT-400°C). However 15.5 mole% YSZ seems to be more suitable from the view point of thermo-elastic performance at elevated temperatures (500–800°C). Polycrystalline properties predicted are within 5% error limits of the experimental values for Young's modulus of 12 mole% Yittria Stabilized Zirconia. Numerical prediction of Young's modulus of 12 mole% YSZ for 〈100〉 orientation is 362 GPa as compared to experimental value of 370 GPa reported in literature.


Polymer Anisotropy Zirconia Elevated Temperature Isotropic Material 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. A. MEULENBERG, O. TELLER, U. FLESCH, H. P. BUCHKREMER and D. STOVER, J. Mater. Sci. 36 (13) (2001) 3189.CrossRefGoogle Scholar
  2. 2.
    R. WILKENHOENER, H. P. BUCHKREMER, D. STOLTEN and A. KOCH, ibid 36 (2001) 1775.CrossRefGoogle Scholar
  3. 3.
    A. SELUC and A. ATKINSON, ibid. 36 (2001) 1173.CrossRefGoogle Scholar
  4. 4.
    A. SELUC and A. ATKINSON, J. Am. Ceram. Soc. 83 (2000) 2029.Google Scholar
  5. 5.
    S. PRIMDAHL, B.F. SORENSON and M. MOGENSEN, ibid. 83 (2000) 489.CrossRefGoogle Scholar
  6. 6.
    B.F. SORENSON and S. PRIMDAHL, ibid. 33 (1998) 5291.Google Scholar
  7. 7.
    N. Q. MINH, ibid. 76 (3) (1993) 563.CrossRefGoogle Scholar
  8. 8.
    N. G. PACE, G. A. SAUNDERS, Z. SUMENGEN and J. S. THORP, ibid. 4 (12) (1969) 1106.Google Scholar
  9. 9.
    J. D. BUCKLEY and D. N. BRASKI, ibid. 50 (4) (1967) 220.CrossRefGoogle Scholar
  10. 10.
    H. K. KANDIL, J. D. GREINER and J. F. SMITH, ibid. 67 (5) (1984) 220.CrossRefGoogle Scholar
  11. 11.
    SHIVA GADAG, GANESH SUBBARAYAN andWILLIAM BARKER, Fractography of Monolithic and Multilayer Films on NiO/YSZ Substrates Used in Fuel Cells Applications.*Paper in submission.Google Scholar
  12. 12.
    R. F. COOK and G. M. PHARR: Mechanical Properties of Ceramics in Structure and Properties of Ceramics, edited by R. W. Cahn, P. Haasen and E. Kramer, Materials Science and Technology, V11 by M. Swain, Chapter 7 (VCH Publishers Inc. printed in NY, USA 1994), p 3414.Google Scholar
  13. 13.
    Mechanical Behavior of Materials, Vol. I: Elasticity and Plasticity, edited by D. Francois, A. Pineau and A. Zaoui (Kluwer Academic, The Netherlands, 1998).Google Scholar
  14. 14.
    Structural residual stress analysis by nondestructive methods, edited by V. Hauk (Elsevier, The Netherlands, 1997).Google Scholar
  15. 15.
    S. P. S. BADWAL, Ceramic Superionic Conductors in Structure and Properties of Ceramics, edited by R.W. Cahn, P. Haasen, E. Kramer, Materials Science and Technology, V11 by M. Swain, Chapter 11 (VCH Publishers Inc. printed in FRG 1994), p568.Google Scholar
  16. 16.
    S. P. S. BADWAL and F. T. CIACCHI, Key Engng. Mater. V48-50 (1990) 235.Google Scholar
  17. 17.
    V. I. ALEKSANDROV, G. E. VAL’YANO, B. V. LUKIN, V. V. OSIKO, A. E. RAUTBORT, V. M. TATARINTSEV and V. N. FILATOV, Izv. Akad. Nauk SSSR, Neorg. Mater. 12(2) (1976) 273.Google Scholar
  18. 18.
    SHIVA GADAG and GANESH SUBBARAYAN: “Thermo-mechanical Analysis of Sequential Stack of Solid Oxide Fuel Cells (PSOFC)”. Paper in preparation.Google Scholar
  19. 19.
    R. N. THURSTON, Proc., IEEE 53 (1965)1320.CrossRefGoogle Scholar
  20. 20.
    M. FARLEY, J. S. THORP, J. S. ROSS and G. A. SAUNDERS, J. Mater. Sci. Lett. 7 (4) (1972) 475.CrossRefGoogle Scholar
  21. 21.
    T. HAILING and G. A. SAUNDERS, ibid. 1 (9) (1982)416.CrossRefGoogle Scholar
  22. 22.
    M. MORE, T. ABE, H. ITOH, O. YAMAMATHO, Y. TAKEDA and T. KAWAHARA, Solid State Ionics 74 (1994) 157.CrossRefGoogle Scholar
  23. 23.
    F. J. RITZERERT, H. M. YURI and R. V. MINER, J. Mater. Sci. 33 (1998) 5339.CrossRefGoogle Scholar
  24. 24.
    CAHN, HAASEN and KRAMER: Structure and Properties of Ceramics, edited by R.W. Cahn, P. Haasen, E. Kramer, Materials Science and Technology, V11 by M. Swain, Chapter 11, VCH Publishers Inc. printed in FRG (1994), p568.Google Scholar
  25. 25.
    D. MUNZ and T. FETT (Eds.), “Ceramics”, Springer-verlag, (1999).Google Scholar
  26. 26.
    R.W. RICE, (Ed.), “Porosity of Cermics”, Marcel Dekker, Inc., 1998.Google Scholar
  27. 27.
    T. E. MATIKAS, P. KARPUR and S. SHAMASUNDER, J. Mater. Sci. 32 (4) (1997) 1093.CrossRefGoogle Scholar
  28. 28.
    N. RAMAKRISHNAN and V. S. ARUNACHALAM, ibid. 25 (1990) 3930.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc 2006

Authors and Affiliations

  • Shiva Gadag
    • 1
  • Ganesh Subbarayan
    • 1
    Email author
  • William Barker
    • 2
  1. 1.School of Mechanical EngineeringPurdue UniversityWest Lafayette
  2. 2.ITN Energy Systems, Inc.Littleton

Personalised recommendations