Journal of Materials Science

, Volume 41, Issue 4, pp 1207–1211 | Cite as

Novel basalt fibre reinforced glass matrix composites

  • E. BernardoEmail author
  • E. Stoll
  • A. R. Boccaccini


A novel hot-pressing technique for the manufacturing of basalt fibre reinforced glass matrix composites was investigated. Two-dimensional (2D) fibre mats were sandwiched between borosilicate glass powder layers, thus configuring a much simpler processing route than that commonly employed for the production of fibre-reinforced glasses. Besides economic benefits, the use of fibre mats may lead to technologic advantages due to the possibility of readily coating the fibres with a suitable material (e.g. titanium oxide) by means of the sol-gel method. The coating of basalt fibre mats with TiO2 is proposed for preventing the fibres from an excessive adhesion to the glass matrix. The developed composites containing 15 vol% of 2D-fibre reinforcement exhibited promising bending strength (∼90 MPa) and desirable “graceful” fracture behaviour without catastrophic failure. Thus the present study represents a convenient approach for production of advanced low-cost fibre reinforced glass matrix composites for structural applications.


TiO2 Fracture Behaviour Borosilicate Glass Glass Matrix Processing Route 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. R. BOCCACCINI and R. D. RAWLINGS, Glass Technol. 43C (2002) 191.Google Scholar
  2. 2.
    A. R. BOCCACCINI, J. Ceram. Soc. Japan 109(7) (2001) 99.CrossRefGoogle Scholar
  3. 3.
    T. LEUTBECHER and D. HUELSENBERG, Adv. Eng. Mat. 2 (2000) 93.CrossRefGoogle Scholar
  4. 4.
    K. K. CHAWLA “Ceramic Matrix Composites” (Chapman & Hall, London, 1993).Google Scholar
  5. 5.
    R. U. VAIDYA, J. FERNANDO, K. K. CHAWLA and M. K. FERBER, Mat. Sci. Eng. A150 (1992) 161.CrossRefGoogle Scholar
  6. 6.
    R. VENKATESH, ibid. A268 (1999) 47.CrossRefGoogle Scholar
  7. 7.
    A. R. BOCCACCINI, S. ATIQ and G. HELSCH, Comp. Sci. Tech. 63(6) (2003) 779.CrossRefGoogle Scholar
  8. 8.
    Y. KAGAWA and Y. YAMADA, J. Mat. Sci. Lett. 13 1403.Google Scholar
  9. 9.
    H. IBA, T. CHANG, Y. KAGAWA, H. MINAKUCHI and K. KANAMARU, J. Am. Ceram. Soc. (79) (1996) 881.Google Scholar
  10. 10.
    B. FANKÄNEL, E. MÜLLER, K. WEIZE and G. MARX, Key Eng. Mat. (206–213) (2002) 1109.Google Scholar
  11. 11.
    D. C. PHILLIPS, in “Handbook of Composites, Fabrication of Composites”, edited by A. Kelly and S.T. Mileiko (North-Holland Publishing Company, Amsterdam, 1983) Vol. 4Google Scholar
  12. 12.
    M. J. PASCUAL, L. PASCUAL, A. DURÁN, P. WANGE and C. RÜSSEL, Glass Sci. Technol. 75 (2002) 2, 69.Google Scholar
  13. 13.
  14. 14.
    E. BERNARDO and G. SCARINCI, Ceram. Int. 30 (2004) 785.CrossRefGoogle Scholar
  15. 15.
    J. MILITKY and V. KOVACIC, Text. Res. J. 66(4) (1996) 225.CrossRefGoogle Scholar
  16. 16.
  17. 17.
    C. J. BRINKER and G. E. SCHERER, Sol-Gel Science; The Physics and Chemistry of Sol-Gel Processing. (Academic Press, San Diego, 1990).Google Scholar
  18. 18.
    S. ATIQ, R. D. RAWLINGS and A. R. BOCCACCINI, Glass Science Technol. 77 (2004) 31.Google Scholar
  19. 19.
    Canadian Building Digest, CBD-60 (Characteristics of Window Glass), 1964,

Copyright information

© Springer Science + Business Media, Inc 2006

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Meccanica, settore MaterialiUniversità di PadovaPadovaItaly
  2. 2.Department of MaterialsImperial College LondonLondonUK
  3. 3.Technische Universitaet IlmenauIlmenauGermany

Personalised recommendations