Advertisement

Journal of Materials Science

, Volume 41, Issue 4, pp 1187–1195 | Cite as

Molten salt syntheses of alkali metal titanates

  • P. AfanasievEmail author
Article

Abstract

Submicrometer dispersions of rod-like alkali metal titanates were prepared by the flux method, from the reaction of TiOSO4 or TiO2 precursors in molten alkali metal nitrates, doped with carbonates or hydroxides. Mono-, di-, tetra-, and hexatitanates are formed as a function of the precursor nature and the melt composition. As a rule, in these syntheses poorly crystalline or amorphous solids are obtained, showing the structure of polytitanates on the nanoscopic level. Lamellar potassium hexatitanate can be exchanged by action of a diluted acid, leading to protonic form, free from the alkali metal but retaining initial morphology. Reactivity of TiOSO4 and TiO2 in molten alkali metal nitrates and their mixtures with the corresponding carbonates was studied by mass spectrometry of the gases evolved during heating of the reaction mixtures. For both pure and doped nitrates it changes in the expected row Li>Na>K, following the melts oxobasicity sequence.

Keywords

Nitrate TiO2 Mass Spectrometry Hydroxide Alkali Metal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. TREMILLON, La Chimie en Solvants non Aqueux, Presses Universitaires de France, Paris, 1971.Google Scholar
  2. 2.
    P. AFANASIEV and C. GEANTET, Coord. Chem. Rev. 178–180 (1998) 1725.CrossRefGoogle Scholar
  3. 3.
    M. DESCEMOND, C. BRODHAG, F. THEVENOT, B. DURAND, M. JEBROUNI and M. ROUBIN, J. Mater. Sci. 28 (1993) 2283.CrossRefGoogle Scholar
  4. 4.
    Y. DU and D. INMAN, J. Mater. Chem. 5 (1995) 1927.CrossRefGoogle Scholar
  5. 5.
    P. AFANASIEV, C. GEANTET, M. LACROIX and M. BREYSSE, J. Catal. 162 (1996) 143.CrossRefGoogle Scholar
  6. 6.
    P. AFANASIEV, Chem. Mater. 11 (1999) 1999.CrossRefGoogle Scholar
  7. 7.
    M. TIRUMAL, P. JANE and A. K. GANGULI, Mater. Chem. Phys. 70 (2001) 7.CrossRefGoogle Scholar
  8. 8.
    P. AFANASIEV, Synthesis of Microcrystalline LiNbO3 in Molten Nitrate, Mater. Lett. 34 (1998) 253.CrossRefGoogle Scholar
  9. 9.
    A. ABOUJALIL, J.-P. DELUOME, F. CHASSAGNEUX, J.-P. SCHARFF and B. DURAND, J. Mater. Chem. 8 (1998) 160.CrossRefGoogle Scholar
  10. 10.
    J.-P. DELOUME, J.-P. SCHARFF, P. MAROTE, B. DURAND and A. ABOU-JALIL, J. Mater. Chem. 9 (1999) 107.CrossRefGoogle Scholar
  11. 11.
    A. V. GOROKHOVSKY, J. I. ESCALANTE-GARCIA, T. SANCHES-MONJARAS and G. VARGAS-GUTIERREZ.Google Scholar
  12. 12.
    M. H. WENG, T. J. LIANG and C. L. HUANG, J. Eur. Ceram. Soc. 22 (2002) 1693.CrossRefGoogle Scholar
  13. 13.
    S. J. KIM, M. H. CHO, D.-S. LIM and H. JANG, Wear 251 (2001) 1484.CrossRefGoogle Scholar
  14. 14.
    A. R. ARMSTRONG, G. ARMSTRONG, G. CANALES and P. G. BRUCE, Angew. Chem. Int. Ed. 43 (2004) 2286.CrossRefGoogle Scholar
  15. 15.
    B. L. WANG, Q. CHEN, R. H. WANG and L.-M. PENG, Chem. Phys. Lett. 376 (2003) 726.CrossRefGoogle Scholar
  16. 16.
    G. H. DU, Q. CHEN, P. D. HAN, Y. YU and L.-M. PENG, Phys. Rev. B 67 (2003) 035323.CrossRefGoogle Scholar
  17. 17.
    P. AFANASIEV, D. H. KERRIDGE, J. Alloys Comp. 322 (2001) 97.CrossRefGoogle Scholar
  18. 18.
    X. WANG, L. GAO, F. ZHOU, Z. ZHANG, M. JI, C. TANG, T. SHEN and H. ZHENG, J. Cryst Growth 265 (2004) 220.CrossRefGoogle Scholar
  19. 19.
    P. AFANASIEV, J. Alloys Comp. 340(1–2) (2002) 74CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc 2006

Authors and Affiliations

  1. 1.Institut de Recherche sur la CatalyseVilleurbanne CédexFrance

Personalised recommendations