Journal of Materials Science

, Volume 41, Issue 4, pp 1131–1135 | Cite as

Sol-gel synthesis and characterization of the photocatalyst BaCo1/3Nb2/3O3

  • Jiang Yin
  • Zhigang Zou
  • Jinhua Ye


The photocatalyst BaCo1/3Nb2/3O3 has been synthesized at 750°C by using a sol-gel process, and the surface area is 19.70 m2/g. While the surface area of the powder synthesized by using a solid state reaction process is 2.2 m2/g. It was characterized by X-ray diffraction, scanning electron microscopy(SEM), UV-vis diffuse reflectance spectroscopy, Raman scattering spectroscopy and the measurement of the photocatalytic activity in evolving H2 from CH3OH/H2O solution with the Pt co-catalyst under visible light irradiation. From the SEM image, BaCo1/3Nb2/3O3 powder calcined at 750°C is dispersive, and the average particle size is about 30 nm. Raman scattering spectrum at room temperature shows that, due to the different ionic radius of the Co2+ and Nb5+ ions, BaCo1/3Nb2/3O3 may has a distorted perovskite structure. Under visible light irradiation (λ > 420 nm), the formation rate of H2 evolution from CH3OH/H2O solution with the 0.5 wt% Pt co-catalyst is about 18.1 μmol/h·gcat. for the photocatalyst BaCo1/3Nb2/3O3, much higher than that of BaCo1/3Nb2/3O3 powder synthesized by the solid state reaction process.


Scanning Electron Microscopy Perovskite Scanning Electron Microscopy Image Photocatalytic Activity Formation Rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. HONDA and A. FUJISHIMA, Nature 238 (1972) 37.CrossRefGoogle Scholar
  2. 2.
    R. ASAHI, T. MORIKAWA, T. OHWAKI, K. AOKI and Y. TAGA, Science 293 (2001) 269.CrossRefGoogle Scholar
  3. 3.
    Z. ZOU, J. YE, K. SAYAMA and H. ARAKAWA, Nature(Lond.) 414 (2001) 625.CrossRefGoogle Scholar
  4. 4.
    K. DOMEN, A. KUDO and T. ONISHI, J. Catal. 102 (1986) 92.CrossRefGoogle Scholar
  5. 5.
    A. KUDO, H. KADO and S. NAKAGAWA, J. Phys. Chem. B 104 (2000) 571.CrossRefGoogle Scholar
  6. 6.
    J. XU and M. GREENBLATT, J. Solid State Chem. 121 (1996) 273.CrossRefGoogle Scholar
  7. 7.
    D. E. SCAIFE, Sol. Energy 25 (1980) 41.CrossRefGoogle Scholar
  8. 8.
    A. L. LINSEBIGLER, G. LU and J. T. YATES JR, Chem. Rev. 95 (1995) 735.CrossRefGoogle Scholar
  9. 9.
    A. KUDO, H. KATO and S. NAKAGAWA, J. Phys. Chem. B 104 (2000) 571.CrossRefGoogle Scholar
  10. 10.
    J. YIN, Z. ZOU and J. YE, J. Phys. Chem. B 107 (2003) 4936.CrossRefGoogle Scholar
  11. 11.
    M. D. FONTANA, G. METRAT, J. L. SERVOIN and F. GERVAIS, J. Phys. C: Solid State Phys. 16 (1984) 483.CrossRefGoogle Scholar
  12. 12.
    A. SCALABRIN, A. S. CHAVES, D. S. SHIM and S. P. S. PORTO, Phys. Stat. Sol. (b) 79 (1977) 731.CrossRefGoogle Scholar
  13. 13.
    A. G. SOUZA FILHO, K. C. V. LIMA, A. P. AYALA, I. GUEDES, P. T. C. FREIRE, F. E. A. MELO, J. MENDES FILHO, E. B. ARAUJO and J. A. EIRAS, Phys. Rev. B 66 (2002) 132107.CrossRefGoogle Scholar
  14. 14.
    C. H. PERRY and B. N. KHANNA, Phys. Rev. 135 (1964) A408.CrossRefGoogle Scholar
  15. 15.
    F. GALASSO, L. KATZ and R. WARD, J. Am. Chem. Soc. 81 (1959) 820.CrossRefGoogle Scholar
  16. 16.
    F. GALASSO and W. DARBY, J. Phys. Chem. 66 (1962) 131.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc 2006

Authors and Affiliations

  • Jiang Yin
    • 1
    • 2
  • Zhigang Zou
    • 3
  • Jinhua Ye
    • 1
    • 2
  1. 1.Precursory Research for Embryonic Science and TechnologyJapan Science and Technology Agency (JST)Japan
  2. 2.Ecomaterials CenterNational Institute for Materials Science (NIMS)IbarakiJapan
  3. 3.Ecomaterials and Renewable Energy Research CenterNanjing UniversityNanjingChina

Personalised recommendations