Journal of Materials Science

, Volume 41, Issue 4, pp 1073–1080 | Cite as

Spray processing and wear characteristics of Al-Cu-Al2O3-Pb based composites

  • M. Anil
  • S. N. Ojha


The spray deposition process has been employed in synthesis of Al-4.5Cu-10Al2O3 and Al-4.5Cu-10Al2O3-10Pb based composites. The microstructure and wear characteristics of composites were investigated. The rapid solidification inherent in spray deposition processing resulted in a uniform dispersion of Al2O3 and Pb particles co-existing in the matrix of the- primary α-phase. The grain size of the Al-4.5Cu-10Al2O3-Pb composite was observed to be higher than that of the Al-4.5Cu-10Al2O3 composite in various sections of the spray deposit. The wear rate of composite materials decreased with addition of Pb phase. This behavior is discussed in the light of the microstructural modification induced by spray deposition and the morphology of debris particles on the wear track surfaces. The wear characteristics of the composites are compared with that of the liquid immiscible Al-4.5Cu-10Pb alloy.


Microstructure Al2O3 Composite Material Wear Rate Deposition Process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. LLOYD, Inter. Mat. Rev. 39 (1994) 1.CrossRefGoogle Scholar
  2. 2.
    T. S. SRIVATSAN, T. S. SUNDARSHAN and E. J. LAVERNIA, Prog. Mat. Sci. 39 (1995) 317.CrossRefGoogle Scholar
  3. 3.
    T. T. LONG, T. AISAKA, M. OSE and M. MORITA, J. Jpn. Inst. Met. 51 (1987) 864.CrossRefGoogle Scholar
  4. 4.
    T. T. LONG, T. NISHIMURA, T. AISAKA, M. OSE and M. MORITA, Trans. Japan Inst. Met. 29 (1988) 920.CrossRefGoogle Scholar
  5. 5.
    M. K. SURAPPA and P. K. ROHATGI, J. Mater. Sci. 16 (1981) 983.CrossRefGoogle Scholar
  6. 6.
    B. C. PAI, S. RAY, K. V. PRABHAKAR and P. K. ROHATGI, J. Mater. Sci. Eng. 24 (1976) 31.CrossRefGoogle Scholar
  7. 7.
    J. P. PATHAK, S. N. TIWARI and S. L. MALHOTRA, Wear 112 (1986) 341.CrossRefGoogle Scholar
  8. 8.
    P. R. GIBSON, A. J. CLEGG and A. A. DAS, ibid. 95 (1984) 193.CrossRefGoogle Scholar
  9. 9.
    K. J. BHANSALI and R. MEHRABAIN, J. Met. 9 (1982) 30.Google Scholar
  10. 10.
    K. SOMA RAJU, V. V. BHANU PRASAD, G. B. RUDRAKSHI and S. N. OJHA, Powder Met. 46 (2003) 219.CrossRefGoogle Scholar
  11. 11.
    F. A. BADIA and P. K. ROHATGI, Trans. AFS 77 (1969) 402.Google Scholar
  12. 12.
    A. M. PATTON, J. Inst. Met. 100 (1972) 197.Google Scholar
  13. 13.
    S. N. SINGH and S. N. OJHA, Metals Materials and Processes 3(1) (1991) 29.Google Scholar
  14. 14.
    M. GUPTA, J. J. EISLAS, W. E. FRAZIER, F. A. MOHAMMED and E. J. LAVERNIA, Met. Trans 23B (1992) 719.CrossRefGoogle Scholar
  15. 15.
    A. K. SRIVASTAVA, S. N. OJHA and S. RANGANATHAN, Met Mater. Trans. B 29 (1998) 2205.CrossRefGoogle Scholar
  16. 16.
    Y. WU, J. ZHANG and E. J. LAVERNIA, ibid., 25 (1994) 135.CrossRefGoogle Scholar
  17. 17.
    V. C. SRIVASTAVA, A. UPADHYAYA and S. N. OJHA, Bull. Mat. Sci. 23 No2 (2000) 73.CrossRefGoogle Scholar
  18. 18.
    S. N. OJHA, O. P. PANDEY, B. TRIPATHI and C. RAMACHANDRA, Mater.Trans. JIM 33 (1992) 519.CrossRefGoogle Scholar
  19. 19.
    G. B. RUDRAKSHI, V. C. SRIVASTAVA, J. P. PATHAK and S. N. OJHA, Mat. Sci & Engg. A383 (2004) 30.CrossRefGoogle Scholar
  20. 20.
    G. ARTHUR, J. Inst. Metals 83 (1954) 1329.Google Scholar
  21. 21.
    P. SHUKLA, R. K. MANDAL and S. N. OJHA, Trans.Indian Inst. Met. 57 (2004) 283.Google Scholar
  22. 22.
    E. J. LAVERNIA, J. D. AYERS and T. S. SRIVATSAN, Int. Mat. Rev. 37 (1992) 1.CrossRefGoogle Scholar
  23. 23.
    S. MOHAN, V. AGRAWALA and S. RAY, Z. Metallkunde 80 (1989) 439.Google Scholar
  24. 24.
    J. P. PATHAK and S. N. OJHA, Bull. Mater. Sci. 18 (1995) 975.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc 2006

Authors and Affiliations

  • M. Anil
    • 1
  • S. N. Ojha
    • 1
  1. 1.Department of Metallurgical Engineering, Institute of TechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations