Journal of Materials Science

, Volume 41, Issue 4, pp 1067–1071 | Cite as

Electrical properties of vacuum evaporated PbSnS3 thin films

  • T. A. Kuku
  • S. O. Azi
  • O. Osasona


Electrical conduction of evaporated PbSnS3 films of thickness ranging between 0.1 and 2.0 μm were studied by measuring the dc current in both parallel (planar) and transverse (cross plane) directions to the substrate surface. Conduction mechanisms relevant to various regions of the current-voltage characteristics are discussed. The obtained film conductivities were of the order 10−5 S cm−1 at room temperature and increased exponentially with increasing temperature. No consistent modification of the conductivity values and nature were observed when the films are doped with CdCl2, PbCl2 and CuI impurities. While planar conductivity activation energies were constant with voltage and increased slightly with deposition temperature, the cross plane values were found to depend on both voltage and film deposition temperature.


Polymer Thin Film Activation Energy Electrical Conduction CdCl2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. U. ALPEN, J. FENNER and E. GMELIN, Mater. Res. Bull. 10 (1975) 175.CrossRefGoogle Scholar
  2. 2.
    H. R. CHANDRASEKHAR and D. G. MEAD, Phys. Rev. B: 19 (1979) 932.CrossRefGoogle Scholar
  3. 3.
    T. A. KUKU and S. O. AZI, in “Renewable Energy Technology and the Enviroment,” edited by A. A. M. Sayigh (Pergamon, Oxford, 1992) Vol. 1, p. 297.Google Scholar
  4. 4.
    Idem., J. Mater. Sci. 33 (1998) 3193.Google Scholar
  5. 5.
    O. S. HEAVENS, “Thin Film Physics” (Methuen, London, 1970) p. 7.Google Scholar
  6. 6.
    J. P. ENRIQUEZ and S. MATHEW, Solar Energy Mater. Solar Cells 76 (2003) 313.CrossRefGoogle Scholar
  7. 7.
    J. A. GROENINK and P. H. JASSE, Zeitschrift fur Physikalische Chemie Neue Folge 110 (1978) 17.CrossRefGoogle Scholar
  8. 8.
    N. B. HANNAY and U. COLOMBO, “Electronic Materials” (Academic Press, New York, 1973) p. 479.CrossRefGoogle Scholar
  9. 9.
    A. MEEDER, L. WEINHARDT, R. STRESING, D. FUERTES MARRON R. WURZ, S. M. BABU, T. SCHEDEL-NIEDRIG, M. C. L. STEINER, C. HESKE and E. UMBACH, J. Phys. Chem. Solids 64 (2003) 1553.CrossRefGoogle Scholar
  10. 10.
    G. A. MEDVEDKIN, P. G. BARANOV and S. I. GOLOSHCHAPOV, ibid. 64 (2003) 1691.CrossRefGoogle Scholar
  11. 11.
    G. E. PIKE and C. H. SEAGER, J. Appl. Phys. 50 (1979) 3414.CrossRefGoogle Scholar
  12. 12.
    S. M. SZE, “Physics of Semiconductor Devices” (John Wiley, New York, 1981) p. 5.Google Scholar
  13. 13.
    R. D. GOULD, Thin Solid Films 125 (1985) 63.CrossRefGoogle Scholar
  14. 14.
    J.-H. TAN and W. A. ANDERSON, Solar Energy Mater & Solar Cells 77 (2003) 283.CrossRefGoogle Scholar
  15. 15.
    S. ASHOK and K. P. PANDE, Solar Cells 14 (1985) 61.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc 2006

Authors and Affiliations

  • T. A. Kuku
    • 1
  • S. O. Azi
    • 1
  • O. Osasona
    • 1
  1. 1.Department of Electronic and Electrical EngineeringObafemi Awolowo UniversityIle-IfeNigeria

Personalised recommendations