Journal of Materials Science

, Volume 40, Issue 23, pp 6263–6273 | Cite as

‘Green’ composites Part 1: Characterization of flax fabric and glutaraldehyde modified soy protein concentrate composites



Fully biodegradable, environment friendly ‘green’ composites were prepared using glutaraldehyde (GA) modified soy protein concentrate (MSPC-G) and flax fabric. Soy protein concentrate (SPC) polymer has low tensile properties, poor moisture resistance and is brittle. SPC polymer with 15% glycerin, as an external plasticizer, exhibited fracture stress and Young's modulus of 17 and 368 MPa, respectively. SPC polymer was cross-linked with GA to increase its tensile properties and improve its processability as a resin to manufacture flax fabric-reinforced composites. GA reacts with the free amine groups in SPC to form crosslinks. MSPC-G showed 20% increase in fracture stress and 35% increase in Young's modulus as well as improved moisture resistance compared to SPC. Besides the mechanical properties, MSPC-G was also characterized for its thermal stability and dynamic mechanical properties.

Composite laminates, approximately 1 mm thick, were made using flax fabric and MSPC-G polymer. Composite specimens were prepared with two different orientations, namely, 0° or 90°. The laminates exhibited a Young's modulus of 1.01 and 1.26 GPa in the longitudinal and transverse directions, respectively. The experimental values were compared with the theoretical predictions using pcGINA© software and showed good agreement. The composite specimens also showed good adhesion between flax fabric and MSPC-G resin.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. L. MATTHEWS and R. D. RAWLINGS, in “Composite Materials: Engineering and Science” (CRC Press, NY, 1999) p. 1Google Scholar
  2. 2.
    R. M. CHRISTENSEN, in Proceedings of the IUTAM Symposium on Mechanics of Composite Materials (Virginia, USA, 1982) p. 1.Google Scholar
  3. 3.
    A. N. NETRAVALI and S. CHABBA, in Materials Today (April 2003) p. 22.Google Scholar
  4. 4.
    G. MARSH, in Materials Today (April 2003) p. 36.Google Scholar
  5. 5.
    L. K. BELCHER, L. T. DRZAL, M. MISRA and A. K. MOHANTY, Polym. Preprints 42 (2001) 73.Google Scholar
  6. 6.
    T. PEIJS, e-Polym. ( T_002 (2002) 1.Google Scholar
  7. 7.
    P. LODHA and A. N. NETRAVALI, J. Mater. Sci. 37 (2002) 3657.CrossRefGoogle Scholar
  8. 8.
    S. CHABBA and A. N. NETRAVALI, in Proceedings of the International Workshop on “Green” Composites, (Japan, 2002) p. 1.Google Scholar
  9. 9.
    S. LUO and A. N. NETRAVALI, J. Mater. Sci. 34 (1999) 3709.Google Scholar
  10. 10.
    S. NAM and A. N. NETRAVALI, in Proceedings of the ICCE-9 (San Diego, California, 2002) p. 551.Google Scholar
  11. 11.
    A. N. NETRAVALI, in “Advanced Natural Fibers, Plastics and Composites – Recent Advances”, edited by F. T. Wallenberger and N. Weston (Kluwer Academic Publishers, NY, 2003). in pressGoogle Scholar
  12. 12.
    D. HOKENS, A. K. MOHANTY, M. MISRA and L. T. DRZAL, Polym. Preprints 42 (2001) 71.Google Scholar
  13. 13.
    S. IANNACE, R. ALI and L. NICOLAS, J. Appl. Polym. Sci. 79 (2001) 1084.CrossRefGoogle Scholar
  14. 14.
    D. WANG and X. S. SUN, Ind. Crops Prod. 15 (2002) 43.CrossRefGoogle Scholar
  15. 15.
    M. G. DUNN, L. D. BELLINCAMPI, A. J. J. TRIA and J. P. ZAWADSKY, J. Appl. Polym. Sci. 63 (1997) 1423.CrossRefGoogle Scholar
  16. 16.
    K. GODA, A. GOMES, T. ASAI and T. YAMANE, in Proceedings of the International Workshop on “Green” Composites, (Japan, 2002) p. 8.Google Scholar
  17. 17.
    H. TAKAGI, C. W. WINOTO and A. N. NETRAVALI, in Proceedings of the International Workshop on “Green” Composites (Japan, 2002). p. 4.Google Scholar
  18. 18.
    J. G. COOK, in “Handbook of Textile Fibres” (Merrow Publishing Co. Ltd., England, 1964).Google Scholar
  19. 19.
    K. L. HATCH, in “Textile Science” (West Publishing Company, NY, 1993).Google Scholar
  20. 20.
    S. K. BATRA, in “Handbook of Fiber Chemistry,” edited by M. LEWIN and E. M. PEARCE (Marcel Dekker Inc., NY, 1998) p. 505.Google Scholar
  21. 21.
    T. W. CHOU, in “Textile Structural Composites,” edited by T. W. CHOU and F. K. KO (Elsevier, NY, 1989) p. 209.Google Scholar
  22. 22.
    N. K. NAIK, S. I. TIWARI and R. S. KUMAR, Comp. Sci. Technol. 63 (2003) 609.CrossRefGoogle Scholar
  23. 23.
    Z. M. HUANG, Comp. Part A 33(2002) 253.Google Scholar
  24. 24.
    A. K. MOHANTY, M. A. KHAN and G. HINRICHSEN, Comp. Part A 31 (2000) 143.Google Scholar
  25. 25.
    Idem., Comp. Sci. Technol. 60 (2000) 1115.CrossRefGoogle Scholar
  26. 26.
    L. Y. MWAIKAMBO, E. MARTUSCELLI and M. AVELLA, Polym. Testing 19 (2000) 905.CrossRefGoogle Scholar
  27. 27.
    L. Y. MWAIKAMBO and E. T. N. BISANDA, Polym. Testing 18 (1999) 181.CrossRefGoogle Scholar
  28. 28.
    M. MARIATTI, M. NASIRAND and H. ISMAIL, ibid. 19 (2000) 617.CrossRefGoogle Scholar
  29. 29.
    Y. GOWAYED and L. BAROWSKI, J. Comp. Technol. Res. 24 (2002) 24.Google Scholar
  30. 30.
    Y. GOWAYED and H. FAN, Polym. Compos. 22 (2001) 762.CrossRefGoogle Scholar
  31. 31.
    Y. GOWAYED and L. YI, ibid. 18 (1997) 313.CrossRefGoogle Scholar
  32. 32.
    Y. T.-P. LY, L. A. JOHNSON and J. JANE, in “Biopolymers from Renewable Resources,” edited by D. L. Kaplan (Springer, NY, 1998), p. 144.Google Scholar
  33. 33.
    J. BLASS, C. VERRIEST and M. WEISS, J. Amer. Leather Chem. Assoc. 71 (1976) 121.Google Scholar
  34. 34.
    F. M. RICHARD and J. R. KNOWLES, J. Mol. Biol. 37 (1968) 231.Google Scholar
  35. 35.
    A. F. S. A. HABEEB and R. HIRAMOTO, Arch Biochem. Biophys. 126 (1968) 16.CrossRefGoogle Scholar
  36. 36.
    S. F. THAMES and L. ZHOU, “Effect of preparation and processing on mechanical properties and water absorption of soy protein based biocomposite” ICCE-5, (1998) 887.Google Scholar
  37. 37.
    I. PAETAU, C. Z. CHEN and J. L. JANE, Ind. Eng. Chem. Res. 33 (1994) 1821.CrossRefGoogle Scholar
  38. 38.
    P. LODHA and A. N. NETRAVALI, Comp. Sci. Technol. Accepted (2004).Google Scholar
  39. 39.
    Idem., Ind. Crops Prod. (2004). in pressGoogle Scholar
  40. 40.
    J. W. RHIM, GENNADIOS, D. J. FU, C. L. WELLER and M. A. HANNA, Food Sci. Technol. 32 (1999) 129.Google Scholar
  41. 41.
    J. W. RHIM, Y. WU, C. L. WELLER and M. SCHNEPF, J. Food Sci. 64 (1999) 149.Google Scholar
  42. 42.
    Idem., Sci. Ailments 19 (1999) 57.Google Scholar
  43. 43.
    S. NAM, Environment friendly 'green' biodegradable composites using ramie fibers and soy protein concentrate (SPC) polymer, Master Thesis, Cornell University, Ithaca, NY, Jan. 2002.Google Scholar
  44. 44.
    J. E. BOOTH, in “Principles of Textile Testing” (CBS Publishers and Distributors, New Delhi, India, 1996) p. 209.Google Scholar
  45. 45.
    S. MATSUDA, H. IWATA, N. SE and Y. IKADA, J. Biomed. Mater. Res. 45 (1999) 20.CrossRefGoogle Scholar
  46. 46.
    S. K. PARK, D. H. BAEAND K. C. RHEE, J. Amer. Oil Chem. Soc. 77 (2000) 879.Google Scholar
  47. 47.
    J. ZHANG, P. MUNGARA and J. JANE, Polymer Preprints 39 (1998).Google Scholar
  48. 48.
    Idem., Polymer 42 (2001) 2569.Google Scholar
  49. 49.
    L. ZHANG, P. CHEN, J. HUANG, G. YANG and L. ZHENG, J. Appl. Polym. Sci. 88 (2003) 422.Google Scholar
  50. 50.
    J. K. SEARS and J. R. DARBY, in “The Technology of Plasticizers,” edited by J. K. SEARS and J. R. DARBY (Wiley Interscience, NY, 1982) p. 35.Google Scholar
  51. 51.
    C. M. VAZ, J. F. MANO, M. FOSSEN, R. F. V. TUIL, L. A. D. GRAAF, R. L. REIS and A. M. CUNHA, J. Macromol. Sci.-Phys. B 41 (2002) 33.Google Scholar
  52. 52.
    H. J. SUE, S. WANG and J. L. JANE, Polymer 38 (1997) 5035.CrossRefGoogle Scholar
  53. 53.
    S. WANG, H. J. SUE and J. JANE, J. Macromol. Sci.-Pure Appl. Chem. A 33 (1996) 557.Google Scholar
  54. 54.
    S. NAM and A. N. NETRAVALI, J. Adhes. Sci. Technol. 18 (2004) 1063.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Fiber Science ProgramCornell UniversityIthacaUSA

Personalised recommendations