Journal of Materials Science

, Volume 40, Issue 14, pp 3709–3714 | Cite as

Effect of processing parameters on the particle size and stabilisation of titania sols

  • M. C. Cordero-Cabrera
  • G. S. Walker
  • D. M. Grant
Article

Abstract

A systematic analysis of the main parameters affecting the characteristics of titania sols for photocatalytic applications prepared from the hydrolysis of titanium i-propoxide (TIP) is presented. Stable monomodal sols were obtained at peptization temperatures between 50C and 70C, for water/alkoxide molar ratios ranging from 250 to 1000 and acid/alkoxide molar ratios ranging from 0.4 to 0.7. Unstable sols with bimodal distributions were obtained at higher peptization temperatures. The peptization temperature was the parameter with the greatest influence, followed by acid concentration, whereas the water/alkoxide ratio showed little influence. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to verify the primary particle size as measured by photon correlation spectroscopy (PCS). The observations are explained using the Derjaguin, Landau, Verwey and Overbeek (DLVO) theory on suspension stability.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. FUJISHIMA, J. HASHIMOTO and T. WATANABE, in “TiO2 Photocatalysis, Fundamentals and Applications”, (BKC, Inc., Tokyo, 1999).Google Scholar
  2. 2.
    K. SUNADA, Y. KIKUCHI, K. HASHIMOTO and A. FUJISHIMA, Environ. Sci. Technol 32(5) (1998) 726.CrossRefGoogle Scholar
  3. 3.
    Y. MASAKI and T. YAO, Photocatalysis of TiO2 Films Supported on Stainless-Steel Prepared by Sol-gel Method, Eco Materials Conference, 1997.Google Scholar
  4. 4.
    H. MALLOY, Ceramic Industry 149(10) (1999) 37.Google Scholar
  5. 5.
    K. KATO, Bull. Chem. Soc. Jpn. 65 (1992) 34.Google Scholar
  6. 6.
    E. BARRINGER and H. BOWEN, Langmuir 1 (1985) 414.CrossRefGoogle Scholar
  7. 7.
    B. E. YOLDAS, J. Mater. Sci. 21 (1986) 1087.CrossRefGoogle Scholar
  8. 8.
    L. SHI, N. B. WONG, K. C. TIN and C. Y. CHUNG, J. Mater. Sci. Lett. 16 (1997) 1284.CrossRefGoogle Scholar
  9. 9.
    J. L. LOOK and C. F. ZUKOSKI, J. Am. Ceram. Soc. 75(6) (1992) 1587.CrossRefGoogle Scholar
  10. 10.
    E. BARRINGER and H. BOWEN, Langmuir, 1 (1985) 420.CrossRefGoogle Scholar
  11. 11.
    D. VORKAPIC and T. MATSOUKAS, J. Am. Ceram. Soc. 81(11) (1998) 2815.Google Scholar
  12. 12.
    Q. XU, M. J. GIESELMANN and M. A. ANDERSON, Polym. Mater. Sci. Eng. 61 (1989) 889.Google Scholar
  13. 13.
    A. FERNANDEZ, G. LASSALETTA, V. M. JIMENEZ, A. JUSTO, A. R. GONZALEZ-FELIPE, M. HERRMANN, H. TAHIRI and Y. AIT-ICHOU, Appl. Catal. B 7 (1995) 49.CrossRefGoogle Scholar
  14. 14.
    Internet Source: http://www.scioncorp.com.
  15. 15.
    W. WOOK-SO, S. BIN-PARK, K. JE-KIM, C. HO-SHIN and S. JIN-MOON, J. Mater. Sci. 36 (2001) 4299.CrossRefGoogle Scholar
  16. 16.
    T. L. HANLEY, V. LUCA, I. PICKERING and R. F. HOWE, J. Phys. Chem. B 106 (2002) 1153.CrossRefGoogle Scholar
  17. 17.
    A. JILLAVENKATESA, S. J. DAPKUNAS and L. S. LUM, in “Particle Size Characterization” (NIST Special Publication 960-1, US Government Printing Office, 2001) p. 69.Google Scholar
  18. 18.
    K. KATO, Ceram. Trans. 22 (1991) 63.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • M. C. Cordero-Cabrera
    • 1
  • G. S. Walker
    • 1
    • 2
  • D. M. Grant
    • 1
  1. 1.Advanced Materials Research Group, School of Mechanical, Materials, Manufacturing and EngineeringUniversity of NottinghamUK
  2. 2.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations