Journal of Materials Science

, Volume 40, Issue 15, pp 3969–3981 | Cite as

Microstructural and electrical resistance analysis of laser-processed SiC substrates for wide bandgap semiconductor materials

  • I. A. Salama
  • N. R. Quick
  • A. Kar


Highly conductive phases have been generated on different polytypes of SiC substrates using a laser direct-write technique. Incorporation of both n-type and p-type impurities into the SiC substrates was accomplished by laser irradiation in dopant-containing ambients. X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy have been used to detect the presence of the dopant atoms and the compositional variation induced by laser irradiation. Scanning electron microscopy was used to study the microstructure, morphology and dimensions of the converted regions. The conversion in electric resistance has been attributed to both structural and compositional variations observed for the irradiated tracks


Laser Irradiation Wide Bandgap Compositional Variation Semiconductor Material Electrical Resistance Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. PENSEL and A. D. CHOYKE, Physica B 185 (1993) 264.Google Scholar
  2. 2.
    H. PIERSON, “Handbook of Refractory Carbides and Nitrides” (1st. ed., Noyess publications, New Jersy, 1996), p. 188.Google Scholar
  3. 3.
    J. A. POWELL, D. J. LARKIN, L. G. MATUS, W. J. CHOYKE, J. L. BRADSHAW, L. HENDERSON, M. YOGANATHAN, J. YANG and P. PIROUZ, Appl. Phys. Lett. 56(14) (1990) 1353.Google Scholar
  4. 4.
    S. J. PEARTON, “Processing of Wide Band Gap Semiconductors” (1st ed., William Andrew publishing, New York, 2000), p. 182, 183.Google Scholar
  5. 5.
    J. SINGH, “Semiconductor Devices: Basic Principles” (1st ed. John Wiley & Sons, New York, 2001) p. 358.Google Scholar
  6. 6.
    L. M. PORTER and R. F. DAVIS, Mater. Sci. Eng. B 34 (1995) 83.Google Scholar
  7. 7.
    M. E. LEVINSHTEIN, S. L. RUMAYANTSEV and M. S. SHUR, “Properties of Advanced Semiconductor Materials” (1st ed. John Wiley and Sons, New York, 2001) p. 93–147.Google Scholar
  8. 8.
    O. MADELUNG, “Data in Science and Technology: Semiconductors Group IV Elements and III-V Compounds” (Springer-Verlag, Berlin, 1991) p. 101.Google Scholar
  9. 9.
    C. H. CARTER, JR., V. F. TSVETKOV, R. C. GLASS, D. HENSHALL, M. BRADY, ST. G. MULLER, O. KORDINA, K. IRVINE, J. A. EDMOND, H. S. KONG, R. SINGH, S. T. ALLEN and J. W. PALMOUR, Mat. Sci. and Eng. B 61/62 (1999) p. 1.Google Scholar
  10. 10.
    G. L. HARRIS, “Properties of Silicon Carbide”, Emmys DATAREVIEW series No. 13 (inspec publication, Exeter, 1995) p. 153.Google Scholar
  11. 11.
    W. J. CHOYKE, H. MATSUNAMII and G. PENSEL, “Silicon Carbide-A review of Fundamental Questions and Applications to Current Device Technology” (Wiley- VCH, Berlin, 1997).Google Scholar
  12. 12.
    G. GARDINARU, T. S. SUDARSHAN, S. A. GARDINARU, W. MITCHEL and H. M. HOBOGOOD, Appl. Phys. Lett. 70 (1997) 735.Google Scholar
  13. 13.
    P. G. NEUDECK, SiC Technology in “VLSI Handbook”, edited by W. K. Chen, Ed. Boca Raton (CRC press and IEEE press, Florida, 2000) p. 6.1.Google Scholar
  14. 14.
    T. TROFFER, M. SCHDT, T. FRANK, H. ITOH, G. PENSEL, J. HEINDI, H. P. STRUNK and M. MAIER, Phys. Status. Solidi A. 162 (1997) 277.Google Scholar
  15. 15.
    E. M. HANDY, M. V. ROW, O. W. HOLLAND, P. H. CHI, K. A. JONES, M. A. DERENGE, R. D. VISPUTE and T. VENKATESEN, J. Electron. Mater. 29 (2000) 1340.Google Scholar
  16. 16.
    M. A. CPANO, S. RYU, M. R MELLOCH, J. A COOPER and M. R BUSS, J. Electron. Mater. 27 (1998) 370.Google Scholar
  17. 17.
    H. ITOH, T. TROFFER and G. PENSL, Materials Science Forum 264/268 (1998) 685.Google Scholar
  18. 18.
    G. PENSL, V. AFANS, M. BASSIER, T. FRANK and M. LAUBE, Mater. Sci. Forum 338/342 (2000) 831.Google Scholar
  19. 19.
    L. A. CHRISTEL and J. F. GIBBONS, J. Appl. Phys. 52 (1981) 5050.Google Scholar
  20. 20.
    N. R. QUICK, in Proceedings of International Symposium on Novel Techniques in Synthesis and Processing of Advanced Materials, edited by J. Singh and S. M. Copley (TMS, Warrendale, PA, 1994) p. 419.Google Scholar
  21. 21.
    N. R. QUICK, in Proceedings of the International Conference on Lasers’ 94 edited by V. J. Corcoran and T. A Goldman, (STS press, McLean, Virginia, 1995) p. 696.Google Scholar
  22. 22.
    N. R. QUICK, “Converting Ceramic Materials to Electrical Conductor and Semiconductors,” US Patent no. 5, p. 145, 741 (Sept. 1992).Google Scholar
  23. 23.
    N. R. QUICK, “Laser Synthesized Ceramic Electronic Devices and Circuits,” (US Patent No 5837607, Nov. 1998).Google Scholar
  24. 24.
    N. R. QUICK, “Laser Synthesized Ceramic Electronic Devices Method of Making,” (US Patent No 6025609, Feb. 2000).Google Scholar
  25. 25.
    N. R. QUICK, “Method for Making Laser Synthesized Ceramic Electronic Devices and Circuits,” (US Patent No 6054375, April 2000).Google Scholar
  26. 26.
    D. K. SENGUPTA, N. R. QUICK and A. KAR, J. Laser Applications 13 (2001) 26.Google Scholar
  27. 27.
    D. K. SENGUPTA, N. R. QUICK and A. KAR, Laser Synthesis of Ohmic Contacts in Silicon Carbide Having Schottky Diode Characteristics Before Laser Treatment, presented at “Int. Cong. on Appl. of Lasers and Electro-Optics” ICALEO, Jacksonville, Florida USA 2001.Google Scholar
  28. 28.
    I. A. SALAMA, N. R. QUICK and A. KAR, “Laser Doping of Silicon Carbide substrates”, J. Elec. Mats. 31 (2002) 200.Google Scholar
  29. 29.
    W. J SPITZER, A. KLEINMAN and D. J. WALSH, Phys. Rev. 113 (1959) 127.Google Scholar
  30. 30.
    W. M. STEEN, “Laser Material Processing” 2nd ed., (Springer-Verlag publications, London, 1998). p 109.Google Scholar
  31. 31.
    J. XIE and A. KAR, in Proceedings of the International Conference on Lasers’ 95, edited by J. Mazumder, A. Matsunawa, and C. Magnusson. ICALEO Proceedings (LIA publications, Orlando, Fl.,1995).Google Scholar
  32. 32.
    X-ray powder diffraction data for Silicon Carbide, PDF # 42–1360.Google Scholar
  33. 33.
    X-ray powder diffraction data for Silicon, PDF # 41–1111.Google Scholar
  34. 34.
    X-ray powder diffraction data for 2H-Graphite, PDF # 41–1487.Google Scholar
  35. 35.
    X-ray powder diffraction data of Nitrogen, PDF # 23–1294.Google Scholar
  36. 36.
    X-ray powder diffraction data for Silicon Nitride, PDF # 33–1160.Google Scholar
  37. 37.
    Y. V. FATTAKHOV, R. M. BAYAZITOV, I. B. KHAIBULLIN and T. N. L’VOVA, “High Power laser- Science and Engineering” (Kluwer academic publishers, Netherland, 1996) p. 533.Google Scholar
  38. 38.
    V. I. EMEL YANOV, Laser Physics 2 (1992) 389.Google Scholar
  39. 39.
    J. DORWAT, G. DE MARIA and M. G. INGRAM, J. Chem. Phys. 29 (1958) 1015.Google Scholar
  40. 40.
    T. FUHRICH, P. BERGER and H. HUGEL, J. Laser Appl. 13 (2001) 178.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Intel Corporation -Assembly Technology DevelopmentChandler
  2. 2.Applicote AssociatesLake Mary
  3. 3.Laser-Aided Manufacturing, Materials and Micro-Processing Laboratory (LAMMMP), School of Optics, Center for Research and Education in Optics and Lasers (CREOL)University of Central FloridaOrlando

Personalised recommendations