Journal of Materials Science

, Volume 40, Issue 12, pp 3169–3176 | Cite as

Comparison of the intergranular segregation for eight dilute binary metallic systems in the Σ 11′ {332} tilt grain boundary

  • O. Hardouin Duparc
  • A. Larere
  • B. Lezzar
  • O. Khalfallah
  • V. Paidar
Article

Abstract

Intergranular segregation is studied in the limit of infinitely diluted solution for eight dilute metallic systems made of four face centred cubic metals, one transition metal, nickel, and three noble metals, copper, silver and gold. The grain boundary (GB) chosen is the symmetrical tilt Σ = 11′ {332} 〈110〉 GB with its characteristic “zigzag” structural pattern as numerically calculated and experimentally observed by high resolution transmission electronic microscopy in nickel. The metallic interactions are modelled with Finnis-Sinclair like potentials. The atomic sites are characterised by a geometrical parameter defined with their exact Voronoï’ volumes and the tensor of the stresses locally exerted. The {332} GB presents the most diversity of sites in these respects. The segregation energies are computed and analysed versus the only two ‘driving forces’ which can play a role in metallic intergranular segregation, viz. the elastic size effect and the excess cohesion energy effect. The elastic size effect calculated by the method of virtual impurity represents the main segregation driving force in most cases of the considered systems. It is worth noting however that the excess cohesion energy effect is important for non hydrostatic or compressive sites. It can even be predominant, as in the case of Ni(Cu).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. W. BALLUFFI, in “Interfacial Segregation”, edited by W. C. Johnson and J. M. Blakely (American Society for Metals, Metal Park, Ohio, 1979) p. 193.Google Scholar
  2. 2.
    C. L. BRIANT, in “Materials Interfaces: Atomic-level Structures and Properties, ” edited by D. Wolf and S. Yip (Chapman & Hall, London, 1992) p. 463.Google Scholar
  3. 3.
    S. M. FOILES and D. N. SEIDMAN, in “Materials Interfaces: Atomic-level Structures and Properties, ” edited by D. Wolf and S. Yip (Chapman & Hall, London, 1992) p. 497.Google Scholar
  4. 4.
    P. LEJCEK and S. HOFMANN, Crit. Rev. Sol. St. Mat. Sci. 20 (1995) 1.Google Scholar
  5. 5.
    A. P. SUTTON and R. W. BALLUFFI, in “Interfaces in Crystalline Solids” (Oxford University Press, New York, 1995).Google Scholar
  6. 6.
    E. D. HONDROS, M. P. SEAH, S. HOFFMAN and P. LEJCEK, in “Physical Metallurgy, ” 4th, revised, edn, edited by R. W. Cahn and P. Haasen (North Holland, Amsterdam, 1996) Vol. II, p. 1201.Google Scholar
  7. 7.
    A. P. SUTTON and V. VITEK, Acta Metall. 30 (1982) 2011.CrossRefGoogle Scholar
  8. 8.
    D. WOLF, in “Character of Grain Boundaries, ” Advances in Ceramics, edited by M. F. Yan and A. H. Heuer (The American Ceramic Society, Inc., Colombus, 1983) Vol. 6.Google Scholar
  9. 9.
    V. VITEK and G. J. WANG, Surf. Sci 144 (1984) 110.CrossRefGoogle Scholar
  10. 10.
    M. HASHIMOTO, Y. ISHIDA, S. WAKAYAMA, R. YAMAMOTO, M. DOYAMA and T. FUJIWARA, Acta metall 32 (1984) 13.CrossRefGoogle Scholar
  11. 11.
    A. LARERE, K. I. MASUDA-JINDO, R. YAMAMOTO and M. DOYAMA, in “Grain Boundary Structure and Related Phenomena, ” Proceedings of JIMIS-4 (The Japan Institute of Metals, Sendai, 1986) p. 229.Google Scholar
  12. 12.
    T. A. ARIAS and J. D. JOANNOPOULOS, Phys. Rev. Lett 69 (1992) 3330.CrossRefPubMedGoogle Scholar
  13. 13.
    M. MENYHARD, MIN YAN and V. VITEK, Acta Metall. Mater 4 (1994) 2783.Google Scholar
  14. 14.
    A. MAITI, M. F. CHILSHOLM, S. J. PENNYCOCK and S. T. PANTELIDES, Phys. Rev. Lett 77 (1996) 1306.CrossRefPubMedGoogle Scholar
  15. 15.
    H. HUANG, T. DIAZ DE LA RUBIA and M. J. FLUSS, Mater. Res. Soc. Symp. Proc 428 (1996) 177.Google Scholar
  16. 16.
    J. D. RITTNER and D. N. SEIDMAN, Acta mater 45 (1997) 3191.CrossRefGoogle Scholar
  17. 17.
    D. UDLER and D. N. SEIDMAN, ibid 46 (1998) 1221.CrossRefGoogle Scholar
  18. 18.
    X.-Y. LIU, W. XU, S. M. FOILES and J. B. ADAMS, Appl. Phys. Let 71 (1998) 1578.Google Scholar
  19. 19.
    L. G. WANG and C. Y. WANG, Mater. Sci. Forum 294–296 (1999) 489.Google Scholar
  20. 20.
    W. T. GENG, A. J. FREEMAN, R. WU, C. B. GELLER and J. E. RAYNOLD, Phys. Rev. B 60 (1999) 7149.CrossRefGoogle Scholar
  21. 21.
    F. BERTHIER, B. LEGRAND and G. TRÆGLIA, Acta Mater 9 (1999) 2705.CrossRefGoogle Scholar
  22. 22.
    J. CREUZE, Defect and Diffusion Forum 203–205 (2002) 3.Google Scholar
  23. 23.
    R. JANISCH and C. ELSÄSSER, Phys. Rev. B 67 (2003) 224101.Google Scholar
  24. 24.
    B. LEZZAR, O. KHALLFALLAH, A. LARERE, V. PAIDAR and O. HARDOUIN DUPARC, Acta mater. 52 (2004) 2809.CrossRefGoogle Scholar
  25. 25.
    P. WYNBLATT and R. C. KU, Surf. Sci 65 (1977) 511.CrossRefGoogle Scholar
  26. 26.
    Idem, in “Interfacial Segregation, ” edited by W. C. Johnson and J. M. Blakely (ASM, Metals Park, Ohio, 1979) p. 115.Google Scholar
  27. 27.
    G. TRÆGLIA, B. LEGRAND and F. DUCASTELLE, Europhys. Lett 7 (1988) 575.Google Scholar
  28. 28.
    F. DUCASTELLE, B. LEGRAND and G. TRÆGLIA, Suppl. Prog. Theor. Phys 101 (1990) 159.Google Scholar
  29. 29.
    R. HULTGREN, P. D. DESAY, D. T. HAWKINS, M. GLEISER and K. K. KELLY (Eds.), in “Selected Values of the Thermodynamic Properties of Metals and Binary Alloys” (John Wiley, New York, 1973).Google Scholar
  30. 30.
    T. B. MASSALSKI (Ed.), in “Binary Alloys Phase Diagrams” (American Society for Metals, Metal Park, Ohio, 1986).Google Scholar
  31. 31.
    W. HUME ROTHERY, J. Inst. Metals 35 (1926) 295. Also see his “Atomic Theory for the Students of Metallurgy” (The Institute of Metals, London, 1955, 1960).Google Scholar
  32. 32.
    M. W. FINNIS and J. E. SINCLAIR, Phil. Mag A50 (1984) 45.Google Scholar
  33. 33.
    V. ROSATO, M. GUILLOPÆ and B. LEGRAND, ibid A59 (1989) 321.Google Scholar
  34. 34.
    C. KITTEL, in “Introduction to Solid State Physics” 7th (ed.), (John Wiley & Sons, Inc., New York, 1996).Google Scholar
  35. 35.
    M. S. DAW and M. I. BASKES, Phys. Rev. B 29 (1984) 6443.CrossRefGoogle Scholar
  36. 36.
    J. FRIEDEL, in “The Physics of Metals, ” edited by J. M. Ziman (Cambridge University Press, Cambridge, England, 1978) p. 341.Google Scholar
  37. 37.
    G. J. ACKLAND, G. TICHY, V. VITEK and M. W. FINNIS, Phil. Mag A56 (1987) 735.Google Scholar
  38. 38.
    J. H. ROSE, J. FERRANTE and J. R. SMITH, Phys. Rev. Lett 47 (1981) 675.Google Scholar
  39. 39.
    H. J. WOLLENBERGER, in Physical Metallurgy, 4th revised, edn., edited by R. W. Cahn and P. Haasen (Elsevier Science, Amsterdam, 1996), p. 1621.Google Scholar
  40. 40.
    L. E. MURR, in “Interfacial Phenomena in Metals and Alloys” (Addison-Wesley, Reading, Massachusetts, 1975).Google Scholar
  41. 41.
    D. J. H. COCKAYNE, M. L. JENKINS and I. L. F. RAY, Phil. Mag 24 (1971) 1383.Google Scholar
  42. 42.
    M. L. JENKINS, ibid A26 (1972) 747.Google Scholar
  43. 43.
    J. EYMERY, F. LANCON and L. BILLARD, J. Phys. I France 3 (1993) 787.CrossRefGoogle Scholar
  44. 44.
    P. PYYKKÖ, Chem. Rev 97 (1977) 597.CrossRefGoogle Scholar
  45. 45.
    P. PYYKKÖ and J. P. DESCLAUX, Accounts of Chem. Res 12 (1979) 276.CrossRefGoogle Scholar
  46. 46.
    J. R. BEELER JR. and G. L. KULCINSKI, in “Interatomic Potentials and Simulations of Lattice Defects, ” edited by P. C. Gehlen, J. R. Beeler Jr. and R. I. Jaffe (Plenum Press, New York, 1972) p. 735.Google Scholar
  47. 47.
    O. HARDOUIN DUPARC and M. TORRENT, Interf. Sci 2 (1994) 7.Google Scholar
  48. 48.
    V. VITEK and T. EGAMI, Phys. Stat. Sol B144 (1987) 145.Google Scholar
  49. 49.
    G. P. LEJEUNE DIRICHLET, Journal fur die reine und angewandte Mathematik 40 (1850) 209.Google Scholar
  50. 50.
    G. F. VORONOÏ, Journal für die reine und angewandte Mathematik 133 (1908) 97; ibid 134 (1908) 198; ibid. 136 (1909) 67.Google Scholar
  51. 51.
    J. H. CONWAY and N. J. A. SLOANE, in “Sphere Packings, Lattices and Groups” (Springer-Verlag, New York, 1993).Google Scholar
  52. 52.
    B. C. RAPAPORT, in “The Art of Molecular Dynamics” (Cambridge University Press, Cambridge, 1995).Google Scholar
  53. 53.
    R. DEFAY and I. PRIGOGINE, in “Tension Superficielle et Adsorption” (Desoer, Liege, 1951); with A. Bellemans, translated by D. H. Everett, Surface Tension and Adsorption (Longmans, London, 1966).Google Scholar
  54. 54.
    D. MCLEAN, in “Grain Boundaries in Metals” (Oxford University Press, London, 1957).Google Scholar
  55. 55.
    B. J. PINES, J. Phys (Moscow, Acad. USSR) 3 (1940) 309.Google Scholar
  56. 56.
    J. FRIEDEL, Advan. Phys 3 (1954) 446.Google Scholar
  57. 57.
    J. D. ESHELBY, Adv. Solid State Phys 3 (1956) 79.Google Scholar
  58. 58.
    G. TREGLIA and B. LEGRAND, Phys. Rev. B 35 (1987) 4338.CrossRefGoogle Scholar
  59. 59.
    O. HARDOUIN DUPARC, not yet published note.Google Scholar
  60. 60.
    J. D. RITTNER and D. N. SEIDMAN, Phys. Rev. B 54 (1996) 6999.CrossRefGoogle Scholar
  61. 61.
    V. PAIDAR, A. LARERE and L. PRIESTER, in “Interface Science and Materials Interconnection, ” in Proceedings of JIMIS-8 (The Japan Institute of Metals, Sendai, 1997) p. 523.Google Scholar
  62. 62.
    O. HARDOUIN DUPARC, S. POULAT, A. LARERE, J. THIBAULT and L. PRIESTER, Phil. Mag A80 (2000) 853.Google Scholar
  63. 63.
    E. S. MACHLIN, Scripta Metall. 14 (1980) 125.CrossRefGoogle Scholar
  64. 64.
    D. UDLER and D. N. SEIDMAN, Phys. Rev. B 54 (1996) 11133.CrossRefGoogle Scholar
  65. 65.
    A. LARERE, M. GUILLOPE and K. I. MASUDA-JINDO, J. Phys. Colloq. France 49 (1988) C5-47.Google Scholar
  66. 66.
    E. ZEN, Amer. Mineral 41 (1951) 523.Google Scholar
  67. 67.
    J. FRIEDEL, Phil. Mag 46 (1955) 514.Google Scholar
  68. 68.
    C. D. GELATT and H. EHRENREICH, Phys. Rev. B 10 (1974) 398.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • O. Hardouin Duparc
    • 1
  • A. Larere
    • 2
  • B. Lezzar
    • 3
  • O. Khalfallah
    • 3
  • V. Paidar
    • 4
  1. 1.LSI, °ecole PolytechniqueFrance
  2. 2.LEMHE, Université de Paris XIFrance
  3. 3.LMDM, Mentouri UniversityConstantineAlgeria
  4. 4.Institute of PhysicsAcademy of SciencesPragueCzech Republic

Personalised recommendations