Advertisement

Journal of Materials Science

, Volume 41, Issue 4, pp 1029–1037 | Cite as

Synthesis and characterization of coprecipitation-derived ferrimagnetic glass-ceramic

  • O. Bretcanu
  • S. Spriano
  • C. Brovarone Vitale
  • E. Verné
Article

Abstract

Ferrimagnetic glass-ceramics could be used for magnetic induction hyperthermia. This technique is utilised for the destruction of solid neoplastic diseases by application of an alternating magnetic field. Biocompatible ferrimagnetic materials could be easily incorporated into a tumour and could generate heat mainly by hysteresis loss.

A ferrimagnetic glass-ceramic in the system SiO2–Na2O–CaO–P2O5–FeO–Fe2O3 has been prepared by melting of the coprecipitation-derived raw materials. This glass-ceramic contains a unique crystalline phase, magnetite, embedded in an amorphous matrix. Magnetite crystals precipitate during cooling from melting temperature. This glass-ceramic would no longer require any nucleation and growth thermal treatment, since the maximal quantity of magnetite crystals was produced during cooling. The average unit-cell parameter, crystallite size of magnetite, and the quantitative ratio of the crystallographic phases in the glass-ceramic samples were evaluated using two different methods. Similar results were obtained with both methods. The magnetite crystals are about 50 nm in dimensions. The samples contain 45 wt% of magnetite, homogeneously distributed in the amorphous residual matrix.

The as prepared glass-ceramic has a saturation magnetisation of 34 A·m2/kg and a coercive force of 6.7 kA/m. The estimated magnetic loss/cycle under the magnetic field up to 796 kA/m is around 1.45 mJ/g. The specific power loss of this glass-ceramic under a magnetic field of 40 kA/m and a frequency of 440 kHz is 25 W/g.

This material showed a bioactive behaviour, as after 2 weeks of soaking in a simulated body fluid the formation of a hydroxylapatite layer on their surface was observed. This feature makes it also suitable for bone cancer.

Keywords

Magnetite Na2O Simulated Body Fluid Coercive Force Amorphous Matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. H. NUSSBAUM, “Physical Aspects of Hyperthermia” (American Institute of Physics, Inc., 1982).Google Scholar
  2. 2.
    B. N. GRAY and S. K. JONES, “Targeted Hysteresis hyperthermia as a method for treating diseased tissue”, U. S. Patent 6167313 (2000).Google Scholar
  3. 3.
    W. CAO and L. L. HENCH, Ceram. Int. 22 (1996) 493.CrossRefGoogle Scholar
  4. 4.
    BORRELLI et al., “Radio frequency induced hyperthermia for tumor therapy”, U.S. Patent 4323056 (1982).Google Scholar
  5. 5.
    Y. K. LEE and S. Y. CHOI, J. Amer. Ceram. Soc. 79 (1996) 992.CrossRefGoogle Scholar
  6. 6.
    S. H. OH, S. Y. CHOI, Y. K. LEE and K. N. KIM, J. Biomed. Mater. Res. 54 (2001) 360.CrossRefGoogle Scholar
  7. 7.
    Y. EBISAWA, F. MIYAJI, T. KOKUBO, K. OHURA and T. NAKAMURA, J. Ceram. Soc. Jpn. 105 (1997) 947.CrossRefGoogle Scholar
  8. 8.
    Y. EBISAWA, Y. SUGIMOTO, T. HAYASHI, T. KOKUBO, K. OHURA and T. YAMAMURO, Sermikkusu Ronbunshi 1 (1991) 7.CrossRefGoogle Scholar
  9. 9.
    Y. EBISAWA, F. MIYAJI, T. KOKUBO, K. OHURA and T. NAKAMURA, Biomaterials 18 (1997) 1277.CrossRefGoogle Scholar
  10. 10.
    M. FERRARIS, O. BRETCANU and E. VERNÉ, “Biocompatible magnetic materials for hyperthermia cancer treatment and their synthesis processing”, Italian Patent IT2002TO00994 (2002).Google Scholar
  11. 11.
    O. BRETCANU, Ph.D thesis: “Magnetic Biomaterials for Hyperthermic Treatment of Cancer” (Politecnico di Torino, Italy, 2004).Google Scholar
  12. 12.
    H. KLUG and L. ALEXANDER, “X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials” (John Wiley & Sons, Inc., London, 1962).Google Scholar
  13. 13.
    R. A. YOUNG, “The Rietveld Method” (IUCr, Oxford University Press, Oxford, UK, 1993).Google Scholar
  14. 14.
    A. LE BAIL, J. Non-Cryst. Sol., 183 (1995) 39.CrossRefGoogle Scholar
  15. 15.
    L. LUTTEROTTI and P. SCARDI, J. Appl. Cryst. 23 (1990) 246.CrossRefGoogle Scholar
  16. 16.
    https://doi.org/www.ing.unitn.it/∼luttero/Publications/EPDIC_V/silicate_glass.html
  17. 17.
    M. MA, Y. ZHANG, W. YU, H. Y. SHEN, H. Q. ZHANG, AND N. GU, Coll. Surf. A: Physicochem. Eng. Aspects. 212 (2003) 219.CrossRefGoogle Scholar
  18. 18.
    T. KOKUBO, Protocol for preparing Simulated Body Fluid SBF, http://sung7.kuic.kyoto-u.ac.jp/others/SBF/SBF_E.htmlGoogle Scholar
  19. 19.
    S. R. JANASI, M. EMURA, F. J. G. LANDGRAF and D. RODRIGUES, “The effects of synthesis variables on the magnetic properties of coprecipitated barium ferrite powders”, J. Magnet. Magnetic Mater. 238 (2002) 168.CrossRefGoogle Scholar
  20. 20.
    O. BRETCANU, E. VERNÉ, L. BORELLO and A. R. BOCCACCINI, “Bioactivity of degradable polymer sutures coated with bioactive glass”, J. Mater. Sci.: Mater. Med. 15 (2004) 893.Google Scholar
  21. 21.
    R. D. CULLITY, “Introduction to Magnetic Materials” (Addison-Wesley Publishing Company Inc., 1972).Google Scholar
  22. 22.
    F. FIORILLO, Introduzione ai materiali magnetici, Istituto Elettrotecnico Nazionale Galileo Ferrarsi, Torino, 2001.Google Scholar
  23. 23.
    E. GENOVA and A. GOBETTO, Appunti di ferromagnetismo: perdite nei materiali ferromagnetici, Istituto Elettrotecnico Nazionale Galileo Ferraris, Torino, 1984Google Scholar
  24. 24.
    R. HERGT, W. ANDRÄ, C. G. D'AMBLY, I. HILGER, W. A. KAISER, U. RICHTER and H. G. SCHMIDT, IEEE Trans. Magnet., 34 (1998) 3745.CrossRefGoogle Scholar
  25. 25.
    S. DI NUNZIO, C. VITALE BROVARONE, S. SPRIANO, D. MILANES, E. VERNE’, V. BERGO, G. MAINA and P. SPINELLI, J. Europ. Ceram. Soc. 24 (2004) 935.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc 2006

Authors and Affiliations

  • O. Bretcanu
    • 1
  • S. Spriano
    • 1
  • C. Brovarone Vitale
    • 1
  • E. Verné
    • 1
  1. 1.Materials Science and Chemical Engineering DepartmentPolitecnico di TorinoItaly

Personalised recommendations