Journal of Materials Science

, Volume 41, Issue 2, pp 369–375 | Cite as

Complex impedance studies on tungsten-bronze electroceramic: Pb2Bi3LaTi5O18

  • C. K. Suman
  • K. Prasad
  • R. N. P. Choudhary


Complex impedance analysis of polycrystalline Pb2Bi3LaTi5O18, prepared by a high-temperature solid-state reaction technique has been carried out. XRD analysis indicated the formation of a single-phase orthorhombic structure. Impedance plots were used as a tool to analyse the behaviour of the sample as a function of frequency and temperature. The bulk resistance has been observed to decrease with rise in temperature showing a typical negative temperature coefficient of resistance (NTCR) type behaviour like that of semiconductors. The ac impedance studies revealed the presence of grain boundary effect at 450°C and showed polydispersive non Debye-type dielectric relaxation. The frequency dependent ac conductivity at different temperatures indicated that the conduction process is thermally activated process. The activation energy for bulk (0.67 eV) and grain boundary (0.73 eV) was estimated from the temperature variation of respective conductivities.


Dielectric Relaxation Complex Impedance Orthorhombic Structure Bulk Resistance Conduction Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. GLASS, J. Appl. Phys. 40 (1981) 4699.Google Scholar
  2. 2.
    W. W. HO, W. F. HALL, R. R. NEURGAONKAR, R. E. DEWAMES and T. L. MIM, Ferroelectrics 38 (1981) 833.Google Scholar
  3. 3.
    J. M. PÓVA, E. N. MOREIRA, D. GARCIA, D. U. P. SPÍNOLA, C. G. V. DO CARMO and J. A. EIRAS, J. Kor. Phys. Soc. 32 (1998) S1046.Google Scholar
  4. 4.
    C. ELISSALDE and J. RAVEZ, ibid. 32 (1998) S1022.Google Scholar
  5. 5.
    K. KAKIMOTO, H. KAKEMOTO, A. BABA, S. FUJITA and Y. MASUDA, J. Euro. Ceram. Soc. 21 (2001) 1569.CrossRefGoogle Scholar
  6. 6.
    K. NAGATA, Y. YAMAMOTO, H. IGARASHI and K. OKAZAKI, Ferroelectrics 38 (1981) 853.Google Scholar
  7. 7.
    M. H. FRANCOMBE, Acta. Cryst. 13 (1960) 131.CrossRefGoogle Scholar
  8. 8.
    M. E. LINES and A. M. GLASS, in “Principle and Applications of Ferroelectric and Related Materials” (Clarenden Press, Oxford, 1977).Google Scholar
  9. 9.
    V. HORNEBECQ, C. ELISSALDE, V.POROKHONSKYY, V. BOVTUN, J. PETZELT, I. GREGARA, M. MAGLIONE and J. RAVEZ, J. Phys. Chem. Solids 64 (2003) 471.Google Scholar
  10. 10.
    A. KEITSIRO, J. Phys. Soc. Jpn. 41(3) (1976) 880.Google Scholar
  11. 11.
    K. S. SINGH, R. SATI and R. N. P. CHOUDHARY, J. Mater. Sci. Lett. 11 (1992) 788.Google Scholar
  12. 12.
    S. R. SHANNIGRAHI, R. N. P. CHOUDHARY, ATUL KUMAR and H. N. ACHARYA, J. Phys. Chem. Solids 59 (1998) 737.Google Scholar
  13. 13.
    R. N. P. CHOUDHARY, S. R. SHANNIGRAHI and A. K. SINGH, Bull. Mater. Sci. 6 (1999) 975.Google Scholar
  14. 14.
    R. PALAI, R. N. P. CHOUDHARY and H. S. TEWARI, J. Phys. Chem. Solids 62 (2001) 695.Google Scholar
  15. 15.
    A. PANIGRAHI, N. K. SINGH and R. N. P. CHOUDHARY, ibid. 63 (2002) 213.Google Scholar
  16. 16.
    Y. K. HWANG and Y. U. KWON, Mater. Res. Bull. 32 (1997) 1495.Google Scholar
  17. 17.
    C. K. SUMAN, K. PRASAD and R. N. P. CHOUDHARY, Phys. Stat. Sol. (a) 201 (2004) 3166.CrossRefGoogle Scholar
  18. 18.
    K. S. RAO, T. N. V. K. V. PRASAD, A. S. V. SUBRAHMANYAM, J. H. LEE, J. J. KIM and S. H. CHO, Mater. Sci. Engg. B98 (2003) 279.Google Scholar
  19. 19.
    C. J. RAWAN, J. Mater. Res. 13 (1998) 187.Google Scholar
  20. 20.
    P. B. JAMIESON, S. C. ABRAHAM and J. L. BERNSTEIN, J. Chem. Phys. 48 (1965) 5048.Google Scholar
  21. 21.
    R. R. NEURGAONKAR, W. KCORY, W. W. HO and W. F. HALL, Ferroelectrics 38 (1981) 857.Google Scholar
  22. 22.
    K. MEGUMI, N. NAGATSUMA, Y. KASHIWADA and Y. FURUHATA, J. Mater. Sci. 11 (1976) 1583.CrossRefGoogle Scholar
  23. 23.
    J. C. TOLEDANO, Phys. Rev. B 12 (1975) 943.CrossRefGoogle Scholar
  24. 24.
    R. R. NEURGAONKAR and W. K. CORY, J. Opt. Soc. Am. 3 (1986) 274.Google Scholar
  25. 25.
    C. K. SUMAN, K. PRASAD and R. N. P. CHOUDHARY, Mater. Chem. Phys. 82 (2003) 140.Google Scholar
  26. 26.
    Idem., Ind. J. Phys. 78 (2004) 855.Google Scholar
  27. 27.
    C. K. SUMAN, K. PRASAD, S. N. CHOUDHARY and R. N. P. CHOUDHARY, ibid. 78 (2004) 849.Google Scholar
  28. 28.
    C. K. SUMAN, K. PRASAD and R. N. P. CHOUDHARY, Bull. Mater. Sci. 27 (2004) 547.Google Scholar
  29. 29.
    R. VON HIPPLE, in “Dielectrics and Waves” (John Wiley and Sons, NY, 1954).Google Scholar
  30. 30.
    F. A. KRÖGER and H. J. VINK, Solid State Phys. 3 (1956) 307.Google Scholar
  31. 31.
    R. C. DA and Y. G. YAN, Electr. Elem. Mater. 1 (1982) 25.Google Scholar
  32. 32.
    J. R. MACDONALD (Ed.), “Impedance Spectroscopy Emphasizing Solid Materials and Systems” (John Wiley and Sons, NY, 1987).Google Scholar
  33. 33.
    K. S. COLE and R. H. COLE, J. Chem. Phys. 9 (1941) 341.Google Scholar
  34. 34.
    J. GRIGAS, in “Microwave Dielectric Spectroscopy of Ferroelectrics and Related Materials” (Gordon and Breach Pub. Inc., Amsterdam, 1996).Google Scholar
  35. 35.
    R. MIZARAS, M. TAKASHIGE, J. BANYS, S. KOJIMA, J. GRIGAS, S.-I. HAMAZAKI and A. BRILINGAS, J. Phys. Soc. Jpn. 66 (1997) 2881.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • C. K. Suman
    • 1
  • K. Prasad
    • 1
  • R. N. P. Choudhary
    • 1
    • 2
  1. 1.University Department of PhysicsT. M. Bhagalpur UniversityBhagalpurIndia
  2. 2.Department of Physics & MeteorologyIndian Institute of TechnologyKharagpurIndia

Personalised recommendations