Journal of Materials Science

, Volume 40, Issue 16, pp 4221–4229

“Green” composites from recycled cellulose and poly(lactic acid): Physico-mechanical and morphological properties evaluation

  • M. S. Huda
  • A. K. Mohanty
  • L. T. Drzal
  • E. Schut
  • M. Misra


Green”/biobased composites were prepared from poly(lactic acid) (PLA) and recycled cellulose fibers (from newsprint) by extrusion followed by injection molding processing. The physico-mechanical and morphological properties of the composites were investigated as a function of varying amounts of cellulose fibers. Compared to the neat resin, the tensile and flexural moduli of the composites were significantly higher. This is due to higher modulus of the reinforcement added to the PLA matrix. Dynamic mechanical analysis (DMA) results also confirmed that the storage modulus of PLA increased on reinforcements with cellulose fibers indicating the stress transfers from the matrix resin to cellulose fiber. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) showed that the presence of cellulose fibers did not significantly affect the crystallinity, or the thermal decomposition of PLA matrix up to 30 wt% cellulose fiber content. Overall it was concluded that recycled cellulose fibers from newsprint could be a potential reinforcement for the high performance biodegradable polymer composites.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. K. MOHANTY, M. MISRA and L. T. DRZAL, J. Polym. Env. 10(1/2) (2002) 19.CrossRefGoogle Scholar
  2. 2.
    B. BERENBERG, Compos. Technol. Nov./Dec. (2000) 13.Google Scholar
  3. 3.
    A. K. MOHANTY, M. MISRA and G. HINRICHSEN, Macromol. Mater. Eng. 276/277 (2000) 1.CrossRefGoogle Scholar
  4. 4.
    P. MAPLESTON, Mod. Plast. Int. 27(6) (1997) 39.Google Scholar
  5. 5.
    L. FAMBRI, A. PEGORETTI, R. FENNER, S. D. INCARDONA and C. MIGLIARESI, Polymer 36 (1995) 79.Google Scholar
  6. 6.
    R. P. SHELDON, “Composite Polymeric Materials” (Applied Science, London, 1982).Google Scholar
  7. 7.
    N. G. GAYLORD, in “Copolymers, Polyblends and Composites,” edited by N. PLATZER (Academic, New York, 1975) p. 76.Google Scholar
  8. 8.
    R. HEIJENRATH and T. PEIJS, Adv. Compos. Lett. 5(3) (1996) 81.Google Scholar
  9. 9.
    P. ZADORECKI and A. J. MICHELL, Poly. Compos. 10(2) (1989) 27.Google Scholar
  10. 10.
    P. V. JOSEPH, K. JOSEPH and S. THOMAS, J. Compos. Sci. Technol. 59 (1999) 1625.CrossRefGoogle Scholar
  11. 11.
    A. D. BESHAY, B. V. KOKTA and C. DANEAULT, Polym. Compos. 6(4) (1985) 261.CrossRefGoogle Scholar
  12. 12.
    R. GAUTHIER, C. JOLY, A. C. COUPAS, H. GAUTHIER and M. ESCOUBES, ibid. 19(3) (1998) 287.CrossRefGoogle Scholar
  13. 13.
    J. R. WRIGHT and L. J. MATHIAS, J. Appl. Polym. Sci. 48 (1993) 2225; 48 (1993) 2241.CrossRefGoogle Scholar
  14. 14.
    14.H. J. ENDRES and A. PRIES, Starch/Starke 47 (1995) 384.Google Scholar
  15. 15.
    W. GUO and M. ASHIDA, J. Appl. Polym. Sci. 50 (1993) 1435.CrossRefGoogle Scholar
  16. 16.
    A. K. BLEDZKI and J. GASSAN, Prog. Polym. Sci. 24 (1999) 221.CrossRefGoogle Scholar
  17. 17.
    A. K. RANA, B. C. MITRA and A. N. BENERJEE, J. Appl. Polym. Sci. 71 (1999) 531.CrossRefGoogle Scholar
  18. 18.
    L. MASCIA, “The Role of Additives in Plastics” (Edward Arnold, London, 1974) Chap. 3.Google Scholar
  19. 19.
    M. FOLKES, in “Short fiber reinforced thermoplastics,” edited by M. BEVIS (John Wiley & Sons Ltd., New York, 1985) p. 151.Google Scholar
  20. 20.
    E. W. FISHER, H. J. STERZEL and G. WEGNER, Kolloid. Z. Z. Polym. 25 (1973) 980.CrossRefGoogle Scholar
  21. 21.
    J. W. PARK and S. S. IM, J. Appl. Polym. Sci. 86 (2002) 647.CrossRefGoogle Scholar
  22. 22.
    X. LIU, M. DEVER, N. FAIR and R. S. BENSON, J. Environ. Polym. Degrad. 5 (1997) 225.Google Scholar
  23. 23.
    J. J. FAY, C. J. MURPHY, D. A. THOMAS and L. H. SPERLING, Polym. Eng. Sci. 31 (1991) 1731.CrossRefGoogle Scholar
  24. 24.
    K. PETERSEN, PER. V. NIELSEN and B. M. OLSEN, Starch/Starke 53 (2001) 356.CrossRefGoogle Scholar
  25. 25.
    J. GEORGE, S. S. BHAGWAN and S. THOMAS, J. Thermoplast. Compos. Mater. 12 (1999) 443.Google Scholar
  26. 26.
    N. SAHA, D. BASU and A. N. BANERJEE, J. Appl. Polym. Sci. 71 (1999) 541.CrossRefGoogle Scholar
  27. 27.
    C. Chen and C. M. Ma, Compos. Sci. Technol. 52 (1994) 427.CrossRefGoogle Scholar
  28. 28.
    K. C. MANIKANDAN NAIR, S. THOMAS and G. GROENINCK, ibid. 61 (2001) 2519.CrossRefGoogle Scholar
  29. 29.
    B. V. KOKTA, F. DEMBELE and C. DANEAULT, in “Polymer Science and Technology,” edited by C. E. CARRAHER, JR. and L. H. SPERLING (Plenum, New York, 1985) Vol. 33.Google Scholar
  30. 30.
    S. MISHRA, S. S. TRIPATHY, M. MISRA, A. K. MOHANTY and S. K. NAYAK, J. Reinf. Plast. Compos. 21(1) (2002) 5570.Google Scholar
  31. 31.
    N. C. Bleach, S. N. Nazhat, K. E. Tanner, M. Kellomaki and P. Tormala, Biomaterials 23 (2002) 1579.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • M. S. Huda
    • 1
  • A. K. Mohanty
    • 2
  • L. T. Drzal
    • 3
  • E. Schut
    • 4
  • M. Misra
    • 5
  1. 1.Composite Materials and Structures CenterMichigan State UniversityEast LansingUSA
  2. 2.School of PackagingMichigan State UniversityEast LansingUSA
  3. 3.Composite Materials and Structures CenterMichigan State UniversityEast LansingUSA
  4. 4.CreaFill Fibers Corp.ChestertownUSA
  5. 5.Composite Materials and Structures CenterMichigan State UniversityEast LansingUSA

Personalised recommendations