Journal of Materials Science

, Volume 40, Issue 9–10, pp 2471–2475 | Cite as

Interfacial properties and structure stability of Ni/Y2 O3-ZrO2-TiO2 cermet anodes for solid oxide fuel cells

  • X. Mantzouris
  • N. Zouvelou
  • D. Skarmoutsos
  • P. Nikolopoulos
  • F. Tietz
Proceedings of the IV International Conference High Temperature Capillarity

Abstract

Ceramics of the ternary system Y2O3-ZrO2-TiO2 (YZT) and Ni/YZT cermets are evaluated in terms of application as anode electrodes in a Solid Oxide Fuel Cell. Wetting experiments in liquid Ni/YZT systems show that the increase of TiO2 content in the ceramic phase improves the bond strength at the metal ceramic interface, due to the reduction of the interfacial energy. Ni(40 vol%)/YZT cermets are exposed at 1000°C for up to 1000 h in reducing atmosphere and exhibit an improved long term stability regarding to the electrical conductivity and the microstructure compared to the “state of the art” Ni/8YSZ (yttria(8 mol%)-stabilized zirconia) cermet. This is explained by the enhanced adherence at the Ni/ceramic interface, which suppresses the agglomeration rate of the Ni particles. The improvement of the interfacial properties diminishes the TEC values of the Ni/YZT cermets constraining the thermal expansion mismatch between the cermet anode and the 8YSZ electrolyte in the SOFCs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. SETOGUCHI, K. OKAMOTO, K. EGUCHI and H. ARAI, J. Electrochem. Soc. 139 (1992) 2875.CrossRefGoogle Scholar
  2. 2.
    S. S. LIOU and W. L. WORELL, Appl. Phys A 49 (1989) 25.CrossRefADSGoogle Scholar
  3. 3.
    A. KOPP, H. NÅFE, W. WEPPNER, P. KOUNTOUROS and H. SCHUBERT, “Science and Technology of Zirconia V” (Technomic Publ. Co., Lancaster, Pennsylvania, USA, 1993) p. 567.Google Scholar
  4. 4.
    L. S. M. TRAQUEIRA, T. PAGNIER and F. M. B. MARQUES, J. Eur. Ceram. Soc. 17 (1997) 1019.CrossRefGoogle Scholar
  5. 5.
    K. KOBAYASHI, Y. KAI, S. YAMAGUCHI, N. FUKATSU, T. KAWASHIMA and Y. IGUCHI, Solid State Ion. 93 (1997) 193.CrossRefGoogle Scholar
  6. 6.
    D. SKARMOUTSOS, A. TSOGA, A. NAOUMIDIS and P. NIKOLOPOULOS, Solid State Ion. 135 (2000) 439.CrossRefGoogle Scholar
  7. 7.
    D. SKARMOUTSOS, F. TIETZ and P. NIKOLOPOULOS, Fuel Cells 1 243 (2001).CrossRefGoogle Scholar
  8. 8.
    P. KOUNTOUROS, R. FÖRTHMANN, A. NAOUMIDIS, G. STOCHNIOL and E. SYSKAKIS, Ionics 1 (1995) 40.CrossRefGoogle Scholar
  9. 9.
    F. TIETZ, W. JUNGEN, P. LERSCH, M. FIGAJ, K. D. BECKER and D. SKARMOUTSOS, Chem. Mater. 14 (2002) 2252.CrossRefGoogle Scholar
  10. 10.
    A. J. FEIGHERY, J. T. S. IRVINE, D. P. FAGG and A. KAISER, J. Solid State Chem. 143 (1999) 273.CrossRefADSGoogle Scholar
  11. 11.
    B. C. ALLEN, “Liquid Metals” (Marcel Dekker Inc, New York, 1972) p. 161.Google Scholar
  12. 12.
    P. NIKOLOPOULOS, S. NAZARÉ and F. THUMMLER, J. Nucl. Mater. 71 (1977) 89.CrossRefADSGoogle Scholar
  13. 13.
    P. NIKOLOPOULOS, J. Mater. Sci. 20 (1985) 3993.CrossRefADSGoogle Scholar
  14. 14.
    A. TSOGA and P. NIKOLOPOULOS, J. Mater. Sci. 31 (1996) 5409.CrossRefADSGoogle Scholar
  15. 15.
    T. INOUE and HJ. MATZKE, J. Am. Ceram. Soc. 64 (1981) 355.CrossRefGoogle Scholar
  16. 16.
    R. H. BRUCE, “Science of Ceramics” (Academic Press, 1965), Vol. 2, p. 359.Google Scholar
  17. 17.
    A. TSOGA, P. NIKOLOPOULOS and A. NAOUMIDIS, Ionics 2 (1996) 427.CrossRefGoogle Scholar
  18. 18.
    A. TSOGA, A. NAOUMIDIS and P. NIKOLOPOULOS, Acta Mater. 44 (1996) 3679.CrossRefGoogle Scholar
  19. 19.
    “Engineering Properties of Selected Ceramic Materials” (The American Ceramic Soc. Inc., Columbus, Ohio, 1966).Google Scholar
  20. 20.
    D. SKARMOUTSOS, P. NIKOLOPOULOS, F. TIETZ and I. C. VINKE, Solid State Ion. 170 (2004) 153.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • X. Mantzouris
    • 1
  • N. Zouvelou
    • 1
  • D. Skarmoutsos
    • 1
  • P. Nikolopoulos
    • 1
  • F. Tietz
    • 2
  1. 1.Department of Chemical EngineeringUniversity of PatrasPatrasGreece
  2. 2.Institute for Materials and Processes in Energy SystemsForschungszentrum Jülich GmbHJülichGermany

Personalised recommendations