Journal of Materials Science

, Volume 40, Issue 9–10, pp 2437–2441 | Cite as

Influence of wettability on bubble formation in liquid

  • S. Gnyloskurenko
  • A. Byakova
  • T. Nakamura
  • O. Raychenko
Proceedings of the IV International Conference High Temperature Capillarity

Abstract

This paper presents experimental results of the surface phenomena effect on bubble formation from a single orifice in water and at nozzle in liquid aluminium with gas blowing at small flow rates. The usage of coated orifice in water and nozzles of different materials in the melt realized wide range of contact angles. The meaningful stages, termed (1) nucleation period, (2) under critical growth, (3) critical growth and (4) necking, were identified during bubble formation in a regime referring to simultaneous forced flow and surface tension control. It was revealed that bubble formation is substantially dominated by hysteresis of contact angle. Evolution of interface equilibrium and force balance conditions distinctive for bubble formation is clarified. X-ray fluoroscope was used to carry out in-situ observation of bubble formation in the melt. It was shown that bubble volume increased with wettability worsening both for aqueous and metallic systems. A further insight into the mechanism of the bubble formation was obtained by comparison of the bubble behaviour at the tip of the injection devices in liquid aluminium and at the orifice in water.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.-Q. LI and R. HARRIS, Can. Metall. Q. 32 (1993) 31.Google Scholar
  2. 2.
    J. F. DAVIDSON, A. M. I. MECH and B. O. G. SHULER, Trans. Inst. Chem. Eng. 38 (1960) 144.Google Scholar
  3. 3.
    Idem., ibid.38 (1960) 335.Google Scholar
  4. 4.
    R. KUMAR and N. R. KULOOR, Chem. Tech. 19 (1967) 733.Google Scholar
  5. 5.
    S. RAMAKRISHNAN, R. KUMAR and N. R. KULOOR, Chem. Eng. Sci. 24 (1969) 731.CrossRefGoogle Scholar
  6. 6.
    R. KUMAR and N. R. KULOOR, Adv. Chem. Eng. 8 (1970) 256.CrossRefGoogle Scholar
  7. 7.
    A. E. WRAITH, Chem. Eng. Sci. 26 (1971) 1659.CrossRefGoogle Scholar
  8. 8.
    A. MARMUR and E. RUBIN, ibid. 31 (1976) 453.CrossRefGoogle Scholar
  9. 9.
    M. SANO and K. MORI, Trans. JIM 17 (1976) 344.Google Scholar
  10. 10.
    D. A. DESHPANDE, M. D. DEO, F. V. HANSON and A. G. OBLAD, Chem. Eng. Sci. 47 (1992) 1669.CrossRefGoogle Scholar
  11. 11.
    W. FRITZ, Pysik. Z. 36 (1935) 379.Google Scholar
  12. 12.
    R. D. LANAUZE and I. J. HARRIS, Chem. Eng. Sci. 29 (1974) 1663.CrossRefGoogle Scholar
  13. 13.
    Idem., ibid.27 (1972) 2012.Google Scholar
  14. 14.
    B. D. SUMM and YU. V. GORYUNOV, “Phisico-Chemical Fundamentals of Wetting and Spreading” (Chemistry Publisher, Moscow, 1976) (in Russian).Google Scholar
  15. 15.
    M. SANO and K. MORI, Trans. JIM 17 (1976) 344.Google Scholar
  16. 16.
    G. A. IRONS and I. L. GUTHRIE, Metall. Trans. 9B (1978) 101.Google Scholar
  17. 17.
    K. OKUMURA, R. HARRIS and M. SANO, Can. Metall. Q. 37 (1998) 49.CrossRefGoogle Scholar
  18. 18.
    S. V. GNYLOSKURENKO, A. V. BYAKOVA, O. I. RAYCHENKO and T. NAKAMURA, Colloids Surf. A 218 (2003) 73.CrossRefGoogle Scholar
  19. 19.
    L. DAVIDSON and E. H. AMICK, A.I.Ch.E. J. 2 (1956) 337.Google Scholar
  20. 20.
    S. V. GNYLOSKURENKO and T. NAKAMURA, Materials Transactions 44(11) (2003) 2298.CrossRefGoogle Scholar
  21. 21.
    YU. V. NAYDICH, “Contact Phenomena in Metallic Melts” (Naukova Dumka, Kiev, 1972) p. 196 (in Russian).Google Scholar
  22. 22.
    V. N. EREMENKO, T. S. IVANOVA and N. D. LESNIK, Adhesion Melts Weld. Mater. 6 (1980) 51 (in Russian).Google Scholar
  23. 23.
    B. M. GALLOIS, JOM June (1997) 48.Google Scholar
  24. 24.
    V. LAURENT, D. CHATAIN, C. CHATILLON and N. EUSTATHOPOULOS, Acta Metall. 36 (1988) 1797.CrossRefGoogle Scholar
  25. 25.
    V. LAURENT, D. CHATAIN and N. EUSTATHOPOULOS, Mater. Sci. Eng. A135 (1991) 89.Google Scholar
  26. 26.
    G. KAPTAY, in “Metal Foams and Porous Metal Structure,” edited by J. Banhart, M. F. Ashby and N. A. Fleck (MIT-Verlag, Bremen, 1999) p. 141.Google Scholar
  27. 27.
    A. SATYANARAYAN, R. KUMAR and N. KULOOR, Chem. Eng. Sci. 24 (1969) 749.CrossRefGoogle Scholar
  28. 28.
    A. V. BYAKOVA, S. V. GNYLOSKURENKO, T. NAKAMURA and O. I. RAYCHENKO, Colloids Surf. A 229 (2003) 19.CrossRefGoogle Scholar
  29. 29.
    B. KABANOV and A. FRUMKIN, Z. Physik. Chem. (A), Band 165 (1933) 433.Google Scholar
  30. 30.
    I. W. WARK, J. Physic. Chem. 37 (1933) 623.CrossRefGoogle Scholar
  31. 31.
    Y. MIZUNO and M. IGUCHI, ISIJ Int. 41 (2001) S56.CrossRefGoogle Scholar
  32. 32.
    H. TERASHIMA, T. NAKAMURA, K. MUKAI and D. IZU, J. Japan Inst. Metals 56 (1992) 422.Google Scholar
  33. 33.
    K. MUKAI, H. NOZAKI and T. ARIKAWA, CAMP ISIJ 3 (1990) 137.Google Scholar
  34. 34.
    K. MUKAI, ISIJ Int. 32 (1992) 19.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • S. Gnyloskurenko
    • 1
  • A. Byakova
    • 2
  • T. Nakamura
    • 3
  • O. Raychenko
    • 4
  1. 1.IISThe University of TokyoTokyoJapan
  2. 2.IPMUkrainian National Academy of SciencesKyivUkraine
  3. 3.IMRAMTohoku UniversitySendaiJapan
  4. 4.IPMUkrainian National Academy of SciencesKyivUkraine

Personalised recommendations