Journal of Materials Science

, Volume 40, Issue 9–10, pp 2301–2306 | Cite as

The wettability of titanium diboride by molten aluminum drops

  • D. A. WeirauchJr.Email author
  • W. J. Krafick
  • G. Ackart
  • P. D. Ownby
Proceedings of the IV International Conference High Temperature Capillarity


Titanium diboride is widely accepted to be completely wet by liquid aluminum, yet few published wetting studies demonstrate this behavior, and reported contact angles vary widely. Sessile drop substrates from four different sources were selected and their microstructures and chemistries characterized. The results of sessile drop experiments using four techniques to modify oxide film behavior were compared. The Al-TiB2 interfaces were examined in metallographic sections or after chemical removal of the Al drop. Al wets a material containing 5.5 wt% Ni in vacuum experiments before the hold temperature of 1025 C is reached. The other TiB2 substrates are completely wet by Al at 1025 C, but only after prolonged holds under vacuum. Elimination of boron oxide from the TiB2 surface leads to a spreading condition. The role of the substrate microstructure (porosity, grain size, roughness, and carbon content) in altering the wetting kinetics is discussed.


Contact Angle Sessile Drop Triple Line Titanium Diboride Apparent Contact Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. ZHANG, V. DE NORA and J. A. SEKHAR, Materials used in the Hall-Heroult Cell for Aluminum Production, TMS, Warendale, PA (1994) p. 108.Google Scholar
  2. 2.
    N. EUSTATHOPOULOS, M. G. NICHOLAS and B. DREVET, “Wettability at High Temperatures” (Pergamon, Amsterdam, 1999) p. 420.Google Scholar
  3. 3.
    S. K. RHEE, J. Am. Ceram. Soc. 53(7) (1970) 386.CrossRefGoogle Scholar
  4. 4.
    J. G. LI, Ceram. Intern. 20 (1994) 391.CrossRefGoogle Scholar
  5. 5.
    G. V. SAMSONOV, A. D. PANASYUK and M. S. BOROVIKOVA, Por. Metall. 5(125) (1973) 61.Google Scholar
  6. 6.
    N. EUSTATHOPOULOS and L. COUDURIER, Ann. Chim. Fr. (Paris) 10(1) (1985) 1.Google Scholar
  7. 7.
    D. A. WEIRAUCH, JR., W. M. BALABA and A. J. PERROTTA, J. Mater. Res. 10(3) (1995) 640.CrossRefADSGoogle Scholar
  8. 8.
    A. BARDAL, K. NORD-VARHAUG, J. H. ULVENSOEN and E. SKYBAKMOEN, in Proc. 1st Int. Conf. On High-Temperature Capillarity, edited by N. Eustathopoulos (Bratislova, Slovakia, 1994) p. 93.Google Scholar
  9. 9.
    S. V. DEVYATKIN and G. KAPTAY, J. Solid State Chem. 154 (2000) 107.CrossRefADSGoogle Scholar
  10. 10.
    C. MROZ, Bull. Amer. Ceram. Soc. 79(6) (2000) 55.Google Scholar
  11. 11.
    H. R. BAUMGARTNER and R. A. STEIGER, J. Amer. Ceram. Soc. 67(3) (1984) 207.CrossRefGoogle Scholar
  12. 12.
    P. D. OWNBY, K. W. LI and D. A. WEIRAUCH, JR., ibid. 74(6) (1991) 1275.CrossRefGoogle Scholar
  13. 13.
    D. A. WEIRAUCH, JR., in Ceramic Microstructures’86, Role of Interfaces, Materials Science Research, Vol. 21, edited by J. A. Pask and A. G. Evans (Plenum Press, NY, 1988) p. 329.Google Scholar
  14. 14.
    D. A. WEIRAUCH, JR. and W. J. KRAFICK, Metall. Trans. A 21A (1990) 1745.ADSGoogle Scholar
  15. 15.
    H. JOHN and H. HAUSNER, Int. J. High Tech. Ceram. 2 (1986)73.CrossRefGoogle Scholar
  16. 16.
    D. A. WEIRAUCH, JR., in “9th Int. Conf. High Temp. Materials,” edited by K. E. Spear, Electrochem Soc. Proc., Vol. 97–39 (1997) p. 421.Google Scholar
  17. 17.
    K. GRJOTHEIM, C. KROHN, M. MALINOVSKY, K. MATIASOVSKY and J. THONSTAD, “Aluminum Electrolysis,” 2nd. ed. (Aluminium-Verlag, Dusseldorf, 1982) p. 433.Google Scholar
  18. 18.
    C. B. FINCH and V. J. TENNERY, J. Am. Ceram. Soc. 65(7) (1982) C100.CrossRefGoogle Scholar
  19. 19.
    D. A. WEIRAUCH, JR. and W. J. KRAFICK, J. Mater. Res. 11(8) (1996) 1897.CrossRefADSGoogle Scholar
  20. 20.
    E. SAIZ, A. P. TOMSIA and R. M. CANNON, Acta Mater. 47(7) (1998) 2349.CrossRefGoogle Scholar
  21. 21.
    X. G. WANG, J. Central-South Inst. Min. Metall. 24(5) (1993) 602.Google Scholar
  22. 22.
    K. LANDRY and N. EUSTATHOPOULOS, Acta Mater. 44(10) (1996) 3923.CrossRefGoogle Scholar
  23. 23.
    Y.-H. KOH, S.-Y. LEE and H.-E. KIM, J. Am. Ceram. Soc. 84(1) (2001) 239.CrossRefGoogle Scholar
  24. 24.
    K. D. WATSON and J. M. TOGURI, Met. Trans. 22B (1991) 617.Google Scholar
  25. 25.
    JU V. NAIDICH, Prog. Surf. Membr. Sci. 14 (1981) 353.Google Scholar
  26. 26.
    E. A. BRANDES and G. B. BROOK (eds.), “Smithells Metals Reference Book” (Butterworth Heinemann, Oxford, UK) p. 14-6.Google Scholar
  27. 27.
    E. W. DEWING and P. DESCLAUX, Met. Trans. 8B (1977) 555.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • D. A. WeirauchJr.
    • 1
    Email author
  • W. J. Krafick
    • 1
  • G. Ackart
    • 2
  • P. D. Ownby
    • 2
  1. 1.Alcoa Technical Center, Alcoa CenterUSA
  2. 2.Ceramic Engineering DepartmentUniversity of MissouriRollaUSA

Personalised recommendations